
Comparison to CMA-ES

In this section we show convergence plots of op-
timizations using our differentiable simulation
framework compared to a gradient-free CMA-ES
approach. We use the CMA implementation by
Nikolaus Hansen1 in the first comparison (Fig. 1),
and the implementation by Alexander Fabisch2 in
the second one (Fig. 2); both with their default
parameter values.

10−4

10−2

100

102

O
bj
ec
tiv

e
fu
nc

tio
n

0 4000 8000Simulation runs

L-BFGS
CMA-ES

0 30010
−

4

1

Figure 1: Optimizing throwing the bunny to a
specific target. Graph shows all simulation runs,
including ones during line search for L-BFGS. Cir-

cles mark best result per method.

0.002

0.01

0.1

1

O
bj
ec
tiv

e
fu
nc

tio
n

0 5000 15000CPU time [s]

0 2 4
0.002

1 Gauss-Newton
CMA-ES

Figure 2: Optimizing control trajectories for drag-
ging a cube along a circular arc. Graph shows
best result per iteration (filtering out line-search
evaluations for Gauss-Newton, and sub-optimal

samples per generation for CMA).

Scaling of computation time

Here, we test how the computation time scales
with increasing number of objects in a simulation
scene. In this test case, a chain of N rigid bodies is
simulated. The first rigid body is connected to two
springs anchored in world space. Similarly, each
following rigid body is connected to the previous
one by two springs. For all rigid bodies, collision
(kn = 103, kd = 10−3) and friction (µ = 0.5) with

1https://github.com/cma-es/c-cmaes
2https://github.com/AlexanderFabisch/CMA-ESpp

the ground plane is enabled. The total simulated
time is t = 2s with a time step of ∆t = 1/500 s.

Figure 3 shows the resulting computation time for
N = 1..40, exhibiting fairly linear scaling.

0

1

2

3

C
PU

tim
e
[s]

0 10 20 30 40
Nr. of rigid bodies

Figure 3: Computation time per number of rigid
bodies in a “chain” setup. The inset image shows

a screenshot of this test with N = 20.

Number of contact points

The number of contact points influences the colli-
sion response. Increasing the number of contact
points, while keeping the contact penalties (kn,
kd) fixed, results in a stiffer collision response.
Conversely, when scaling the penalties by the sur-
face area each contact point represents, we arrive
at the same total contact force regardless of the
number of contact points (for a planar collision
geometry). In Fig. 4 the restitution is plotted
against the number of contact points per edge
of a rigid cube. For each sample we scale the
penalty factor according to the surface area each
contact point represents, e.g. kn,N = kn,0/N

2 and
kd,N = kd,0/N

2 for N contact points per edge,
where kn,0, kd,0 are nominal stiffness and damp-
ing coefficients.

High-stiffness elastic material

In this example we show an optimization us-
ing continuation of the penalty stiffness (kn =
100..106) such that a deformable cube made of a
stiff elastic material (shear modulus µ = 10 MPa)
reaches a given target position. The optimization
must find the initial velocity, such that the cube
drops to the ground and then slides to the target.

1

https://github.com/cma-es/c-cmaes
https://github.com/AlexanderFabisch/CMA-ESpp

0

0.5

1

R
es
tit

ut
io
n

5 10 15 20 25
Contact points per edge

Figure 4: Restitution remains constant as the
number of contact points increases when scaling
penalty factors by surface area. Inset images
show the contact point distribution for 2, 4, and

10 points per edge respectively.

10−5

10−10

10−15O
bj
ec
tiv

e
fu
nc

tio
n

0 200 400
Simulation run

Figure 5: Best objective function value per simula-
tion run using continuation on the contact penalty
factor. In each continuation step (colours), the
penalty factor doubles, starting from 100, up to
the final value of 106. The inset image shows the

final result.

Rigid body theory

Parameterization of rotation

We parameterize the rotation of a rigid body with
exponential coordinates θ, using the exponential
map R(θ) = limn→∞(I + [θ])n. For ||θ|| > ε we
compute R(θ) with the Euler-Rodrigues formula,
where we use ε = 10−8 in all our examples. For
||θ|| ≤ ε, we use the first-order approximation to
the exponential map R(θ) = I + [θ]. The deriva-
tive of dR/dθ is computed analytically using the
derivation by Gallego and Yezzi [2015], and for
||θ|| ≤ ε we use dR/dθ = [I]. The second-order
derivative of the rotation matrix is computed us-
ing symbolic differentiation.

Rigid bodies

A rigid-body frame is defined by its centre of
mass c and rotational degrees of freedom θ. A
point x̂ in rigid-body coordinates is transformed to
world coordinates with x = c + R(θ)x̂. Similarly,
w = R(θ)ŵ maps a vector ŵ from rigid-body to
world coordinates.

The linear velocity v is equal to the rate of change
of the rigid body’s centre of mass v = ċ. The
angular velocity ω, however, describes the rate
‖ω‖ at which an object rotates around an axis
ω/‖ω‖, and thus ω 6= θ̇. To relate the angular
velocity ω to the rate of change of rotational
degrees of freedom, θ̇, consider a vector a: its rate
of change due to an angular velocity ω is computed
as ȧ = ω × a. Since the column vectors of R are
just the axes of the rigid body’s coordinate frame,
Ṙ can therefore be computed with

Ṙ = [ω]R,

where [·] denotes the skew-symmetric matrix cor-
responding to the left-cross product. R being an
orthogonal matrix, we find

[ω] = ṘRT =
∑

j

∂R
∂θj

RTθ̇j =
∑

j

[(Jω)j]θ̇j ,

where (Jω)j is the j-th column vector of the Jaco-
bian Jω, representing the skew-symmetric matrix
(∂R/∂θj)RT.

Note that Jω is a function of θ. We can conse-
quently write the angular velocity in terms of the
generalized coordinates and their time derivative:

ω(θ, θ̇) = Jω(θ)θ̇

Rigid-body dynamics

Using the above mapping from θ̇ to ω, we can
write the Newton-Euler equations in the form of
Eq. (1), where the generalized mass and forces are

M̂ =
(
mI 0
0 JT

ωIcJω

)
and

f̂ =
(

I
JT

ω[x̂]

)
f −C(q, q̇),

respectively. The first term in f̂ maps forces from
the body’s surface to generalized coordinates and
the fictitious force term C is defined as

C(q, q̇) =
[

0
JT

ωIcJ̇ωθ̇ + JT
ω[Jωθ̇]IcJωθ̇

]
.

2

This term appears because θ̇ is not the same as
the angular velocity ω.

To solve rigid-body dynamics implicitly, we need
to compute the following derivatives:[

∂(Jω)j

∂θi

]
×

= ∂2R
∂θj∂θi

RT + ∂R
∂θj

∂R
∂θi

T
,

[
∂2(Jω)j

∂θi∂θk

]
×

= ∂3R
∂θj∂θi∂θk

RT + ∂2R
∂θj∂θi

∂R
∂θk

T

+ ∂2R
∂θjθk

∂R
∂θi

T
+ ∂R
∂θj

∂2R
∂θi∂θk

T

,

and
∂J̇ω

∂θi
=
∑

j

∂2Jω

∂θjθi
θ̇.

The rotated moment of inertia is computed as
Ic = RTI0R (where I0 is the inertia in rigid-body
coordinates). Its derivative with respect to θ is

∂Ic

∂θi
= ∂R
∂θi

I0RT + RI0
∂R
∂θi

T
.

3

