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A

e desktop publishing revolution of the s is currently repeating itself in D,

referred to as desktop manufacturing. Online services such as Shapeways have be-

come available,making personalizedmanufacturing on cu ing edge additiveman-

ufacturing (AM) technologies accessible to a broad audience. Affordable desk-

top printers will soon take over, enabling people to fabricate custom Dmodels at

home.

Contemporary AM technologies have advanced enough to enable D printing

at high resolution, in full-color, and with mixtures of so and hard materials. As

opposed to subtractive manufacturing (SM) such as milling or drilling, they can

fabricate highly complex assemblies without the need for a manual assembly of

individual components. Yet, one of the major issues holding back widespread use

of AM is the lack of efficient algorithms for the automated fabrication of digital

CG, and the reproduction of physical content. Besides, we do not have tools at our

disposal that aid us with the design ofmulti-material content or complex assembly

structures.

For physical reproduction, we strive for methods to acquire properties such as,

e.g., re ectance (appearance) or elasticity (deformation behavior) from real-world

objects, representing them digitally, then automating their fabrication using AM.

However, the vast majority of digital D content are directly designed on comput-

iii



esis advisor: Prof. Hanspeter P ster Moritz Niklaus Bächer

ers, hence, potentially exhibit a highly non-physical behavior. To fabricate such

content, we seek methods for the automated estimation of physical models from

these digital ones.

is dissertation examines computational aspects of Dmanufacturing. In par-

ticular, we investigate design tools and automated fabrication of an object’s de-

formation behavior, articulation, and geometry. We present a complete process

formeasuring, representing, simulating, and physically fabricating an object’s elas-

tic deformation behavior. is process enables the reproduction of physical de-

formation behavior. Furthermore, we introduce a technique for the automated

fabrication of articulated models, estimated from the most widely used format in

character animation – so called skinned meshes. Our technique estimates assem-

blies, approximating this inherently non-physical input in a piecewise linear man-

ner. Lastly, we propose a method for the scale-aware fabrication of static geom-

etry, capable of abstracting, then engraving details that cannot be fabricated on a

pre-speci ed D printer.
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e purpose of computing is insight, not numbers.

Richard Hamming

1
Introdu ion

e desktop publishing revolution of the s is currently repeating itself in

D, referred to as desktop manufacturing. With contemporary additive manufac-

turing (AM) technologies, we can D print models with stunning detail using a

wide range of materials including plaster, paper, elasto- and hard plastics, as well

as severalmetals. OtherAMtechnologies enable printing in full-color orwithmix-



tures of so and hard materials, within the same model and print job. With AM,

we can fabricate highly complex assemblies that, unlike traditional manufacturing

such as milling or drilling, do not require anymanual assembly of individual com-

ponents. We seem only steps away from what Neil Gershenfeld refers to as “per-

sonal fabricators” (PFs) [ ], devices envisioned to build objects at the atomic

level. While PFs are still more ction than reality, we will soon be able to print

such assemblies, consisting of mechanical and deformable parts, with custom re-

ectance and sca ering properties, andwith embedded sensors and actuators – all

on a single AM device and as single assembled pieces.

Moreover, online services such as Shapeways have become available, making

personalizedmanufacturing on such cu ing edgeAMdevices accessible to a broad

audience, thereby taking on the role of print shops in the early stages of the revo-

lution in D. Affordable desktop printers will soon be available, enabling people

to fabricate personalized D content at home at the press of a bu on.

Despite these technical advances, AM is still of limited use due to the lack of

efficient tools and algorithms for the automated fabrication of digital, and the re-

production of physical content. And, we do not have tools at our disposal that aid

us with the design of multi-material content or complex assembly structures.

Both digital CG and physical objects are complex functions of space and time.

eir appearance varies with position and orientation, and their elasticity, plas-

ticity, and viscosity properties capture their behavior when undergoing deforma-

tions. For physical reproduction, we strive a ermethods for acquiring these prop-

erties from real-world objects, representing them digitally, then automating their



fabrication usingAM.However, the vastmajority of digital D content are directly

designed on computers, hence, potentially exhibit a highly non-physical behavior.

To fabricate such content, we seekmethods for the automated estimation of phys-

ical models from these digital ones.

is dissertation examines computational aspects of D manufacturing an ob-

ject’s deformation behavior, articulation, and geometry. In particular, we present a

complete process for measuring, representing, simulating, and physically fabricat-

ing anobject’s elastic deformationbehavior. While ourprocess allows tophysically

reproduce deformation properties, it is by no means restricted to inputs sampled

from real-world objects. Probes can also be taken from simulations of deformable

models, enabling the fabrication of digital content.

Furthermore, we introduce a technique for the automated fabrication of artic-

ulated models, estimated from the most widely used format in character anima-

tion – so called skinned meshes. In contrast to the input to our reproduction pro-

cess, these skinned representations are inherently non-physical. Moreover, ani-

mated characters for feature lm or computer games are o en purposefully over-

exaggerated, exhibiting a toon-like articulation. Our technique estimates assem-

blies, approximating these non-physical deformable input models in a piecewise

linear manner.

In addition to the above, we propose amethod for the scale-aware fabrication of

static geometry. Although an object’s detailed geometry may render correctly at

any screen resolution and far camera views, features too ne and thinmay be fused

or break during printing. Prior work has addressed the automated detection and



thickening of such critical features [Stava et al. ]. However, while thicken-

ing leads to pleasing results when printing models at mid- to large scales, and with

strong and detailed materials, it results in blobby models when we aim for small

scales or print at lower resolutions and with weaker materials. Our method is ca-

pable of abstracting, then engraving such surface features. While we avoid weak

output models using our abstraction, we keep as much of the perceived detail as

possible by engraving.

. O

A er reviewing relatedwork in computer graphics and relevant elds in the next

chapter, wegive a short primeroncontemporary additivemanufacturing, and their

advantages over traditional manufacturing techniques (Chapter ).

As indicated in Figure . . in brown, we will introduce two measurement sys-

tems–one simple-to-build andhand-held (Section . ), one fully automated (Sec-

tion . ) – that allow acquiring force-displacement samples of a wide range of de-

formable objects, including human so tissue.

In Chapter , we then use sets of such example deformations to construct con-

vincing deformable “clones” of physical objects (Figure . . , red). By doing so,

we avoid complex selection and tuning of physical material parameters, yet re-

tain the richness of non-linear heterogeneous elastic behavior. We represent each

force-displacement sample as a spatially-varying stress-strain relationship in a nite-

elementmodel. We thenmodel thematerial by a non-linear interpolation of these



stress-strain relationships in strain-space. Our run-time simulation algorithm is

based on incremental loading, making it suitable for interactive computer graphics

applications. We present the results of our approach for several non-linear mate-

rials and biological so tissue, with accurate agreement of our model to the mea-

sured data.

Next, we introduce our reproduction process (Figure . . , blue), enabling the

Figure 1.1.1: Computational Aspects of 3D Manufacturing: To probe an
object’s elastic deformation behavior, we built two acquisition systems (brown,
Sections 4.4 and 5.6). From acquired deformation probes, we first estimate digi-
tal, deformable “clones” (red, Chapter 5), then physically reproduce them using
AM (blue, Chapter 5). Next, we estimate fabricatable articulated characters
with internal joints from skinned input meshes (green, Chapter 6). Final 3D
printed characters have durable joints with a frictional design for character pos-
ing. Lastly, we estimate abstracted models from a detailed input geometry, then
engrave fine detail to ensure it is still perceived in the final printouts (orange,
Chapter 7).



automated fabrication of digital deformation behavior on multi-material AM de-

vices. Our process starts with measuring deformation properties of a set of print-

able base materials using our automated measurement system ( Section . ), fol-

lowed by representing each of them as a non-linear stress-strain relationship using

the data-driven technique described inChapter . We then introduce an optimiza-

tion process that nds the best combination of stacked layers of base materials,

given auser-speci edormeasureddeformationbehavior in formof exampledefor-

mations. We demonstrate a complete “physical cloning” process by acquiring and

fabricating the deformation behavior of several objects with complex non-linear

and heterogeneous material properties.

In Chapter and as illustrated in Figure . . in green, we introduce our tech-

nique to fabricate articulated characters from skinnedmeshes. We rst extract a set

of potential joint locations. From this set, together with optional, user-speci ed

range constraints, we then estimate mechanical friction joints that satisfy inter-

joint non-penetration and other fabrication constraints. To avoid bri le joint de-

signs, we place joint centers on an approximate medial axis representation of the

input geometry, and maximize each joint’s minimal cross-sectional area. We pro-

vide several demonstrations, manufactured as single, assembled pieces using D

printers.

Before we conclude with a summary and outlook in Chapter , we discuss our

scale-aware fabrication of detailed geometry in Chapter (Figure . . , orange):

we rst estimate medial ball representations of our input geometry (union of in-

terior balls) and its embedding (union of exterior balls). Next, we abstract non-



fabricatable detail by analyzing radii along edges of a medial graph connecting all

exterior balls, then marking a subset as interior. erea er, we extract the sur-

face separating interior from exterior balls, resulting in a watertight mesh, free of

self-intersecting faces. We engrave non-fabricatable detail by unifying the union

of ball representations of our original input with offset ball representations of our

abstraction.

. C

All our contributions summarizedherein arebridging thegabbetween thephys-

ical and digital in one way or the other:

Sections . and . We contribute two measurement systems tailored for the

non-invasive acquisition of elastic deformation behavior: one with a hand-

held probe, one with a probe a ached to a DOF robotic arm. We use

stereo-vision subsystems to track paintedmarkers during interactions, mak-

ing the acquisition of surface displacements independent of the object’s ap-

pearance properties and robustness w.r.t. occlusions during active probing.

Our hand-held system iswell-suited for the sampling of physical objects and

human tissue at arbitrary locations, varying angles, and with custom con-

tact shapes. Our automated system is tailored for repeatable high precision

acquisition of elastic materials. e resulting force-displacement samples

serve us as input to our data-driven digital cloning and physical reproduc-

tion.



Chapter Given a set of elastic deformation samples, we t a static co-rotational

FEM formulation to each of these force-displacement pairs. To this end,

we discretize a solid model into homogeneous, isotropic tetrahedra, then

estimate the per-element Poisson ratios and Young’s moduli from the mea-

sured displacement constraints and applied forces. To tackle this undercon-

strained, inverse problem, we regularize with a Laplacian matrix, enforcing

smoothness of parameters between neighboring elements. For simulations

of a captured elastic behavior, we use incremental loading.

Chapter We propose a complete process for the physical reproduction and de-

sign of elastic deformable materials using AM.

Chapter We introduce a technique for the automated fabrication of an articu-

lated deformable character on an AM device. Our method takes a skinned

mesh as input, then estimates a fabricatable single-material model that ap-

proximates the D kinematics of the corresponding virtual articulated char-

acter in a piece-wise linear manner.

Section . . We show that an analysis of skinning weights leads to a plausible

segmentation of the character’s geometry into rigid body parts. Transitions

between neighboring segments mark potential joint locations.

Section . . Wepropose novel geometric approximatemodels of joint strength

that enable the estimation of strong mechanical friction joints by maximiz-

ing their minimal cross-sectional areas.



Section . . To ensure strong and functional joints in our output model, we in-

troduce a collision resolution that allows to keep as much of the “fabricat-

able” input articulation as possible, while avoiding inter-joint penetration.

Chapter We propose an automated processing, enabling the small-scale fabri-

cation of detailed static geometry. Inspired by souvenir manufacturing, we

abstract features too ne and thin, then engrave them so that they are still

perceived in printouts.

Sections . and . We extend a representation of unions of interior and exte-

rior medial balls [Amenta et al. a;b] with abstraction and set boolean

operations that enable the selective closing of concavities, and the uni ca-

tion, intersection, and difference of volumes represented by these balls. For

closing, we propose analyzing the change of rate of medial ball radii along

branch ends of the exterior medial axis. Abstractly speaking, these opera-

tions enable the editing and merging of medial axis transforms.

. P

Chapters , , and present material published in the following peer-reviewed

publications.

Chapter B. Bickel, M. Bächer, M. A. Otaduy, W. Matusik, H. P ster, M. Gross.

Capture and Modeling of Non-Linear Heterogeneous So Tissue. In Proceed-

ings of ACM SIGG PH (New Orleans, USA, August - , ), ACM

Transactions on Graphics, vol. , no. .



Chapter B. Bickel, M. Bächer, M. A. Otaduy, H. R. Lee, H. P ster, M. Gross,

W. Matusik. Design and Fabrication of Materials with Desired Deformation

Behavior. In Proceedings of ACMSIGG PH(Los Angeles, USA, July -

, ), ACMTransactions on Graphics, vol. , no. .

Chapter M. Bächer, B. Bickel, D. L. James, H. P ster. Fabricating Articulated

Characters om Skinned Meshes. In Proceedings of ACM SIGG PH (Los

Angeles, USA, August - , ), ACMTransactions on Graphics, vol. ,

no. .

During the time period of this thesis (but not directly related) following work-

shop papers were published:

. A. Peters Randles, M. Bächer, H. P ster, E. Kaxiras. A La ice Boltzmann

Simulation of Hemodynamics in a Patient-Speci c Aortic Coarctation Model.

STACOM Workshop,Held inConjunctionwithMICCAI , LNCS

vol. , Springer, .

. H. Zhang, J. K. Lai, M. Bächer. Hallucination: A Mixed-Initiative Approach

for Efficient Document Reconstruction. e th Human Computation Work-

shop (HCOMP), .



Either write somethingworth reading or do somethingworth

writing.

Benjamin Franklin

2
RelatedWork

Before diving into the speci cs of capturing and modeling deformable objects,

physically cloning such “deformables”, and automating the fabrication of skinned

characters and simpli ed geometry, we discuss work related to these topics in and

beyond computer graphics.

We start with an overviewofmanufacturingwork in graphics, then discuss prior



work onmeasuring deformations of physical objects in Section . . erea er, we

review the large body of prior art on the simulation of deformable models in me-

chanical engineering and graphics in Section . . We extend our review to physical

reproduction in Section . . Next, we discuss work on animation and toy manu-

facturing (Section . ) as they are most closely related to our fabrication work on

skinned characters. For our fabrication-related geometric processing, we review

prior work in computational geometry and graphics in Section . .

. F C G

Triggeredby the recent advances andpopularity of Dmanufacturing technolo-

gies, the computer graphics community has intensi ed their efforts in bridging

the gab between the digital and the physical. While capture and data-driven tech-

niques have a long tradition, the reverse process of fabricating digital content has

only recently go en the a ention of the broader community.

To automate this process, we have to successfully map three components of a

given virtual model to reality: its two static properties, namely geometry and ap-

pearance, and its dynamic properties such as, e.g., its articulation or deformation

behavior.

For the Dmanufacturing of geometry, three key problems have been addressed

bypriorwork: while “stress relief ” [Stava et al. ] andZhou et al.’swork [ ]

detect and correct structurally unsound geometry, “chopper” [Luo et al. ] and

“make it stand” [Prévost et al. ] allow to partition a model into D-printable

parts (scalability) and make it stand as initially intended (balance). We comple-



ment these three techniqueswith a geometric processing framework that allows to

simplify geometry in a scale-aware manner. We defer a detailed review of closely

related work to Section . .

Our community has also devoted efforts to the fabrication of appearance prop-

erties such as a model’s re ectance and subsurface sca ering: Weyrich and col-

leagues [ ] use computer-controlled milling to manufacture custom surface

re ectance andMatusik et al. [ ] D ink printing to fabricate spatially-varying

isotropic re ectance. Anisotropy has been addressed using opaque ink on a re ec-

tive substrate [Malzbender et al. ], a combinationof DandUVprinting [Lan

et al. ], or wave optics [Levin et al. ]. To approximate amodel’s homoge-

neous and inhomogeneous subsurface sca ering, Dong et al. [ ] and Hasan

et al. [ ] fabricate layers of varying thickness of translucent materials using

milling and D printing. More recently, Papas et al. [ ] use continuous pig-

ment mixtures to avoid discretization artifacts for homogeneous sca ering of the

previous two techniques.

In our work, we address two key aspects of a model’s behavior under motion.

Firstly, we reproduce a model’s deformation behavior using multi-material print-

ing (see Chapter ). Secondly and as discussed in Chapter , we approximate

the articulation of skinned characters – the most widely used format in anima-

tion – in a piecewise linear manner. Later (but considered concurrent), Calì et

al. [ ] propose an approach aiding the design of articulatedmodels. However,

unlike ours, their technique starts off with static geometry, while we automatically

estimate printable, jointed toy models from a format that encodes articulation.



While our articulated characters aremanually posed, Zhu et al. [ ] andCoros,

omaszewski, and colleagues [ ] propose systems for the automated design

ofmechanically actuated, animated characters. e designof actuated, deformable

characters from a set of target poses has been studied by Skouras et al. [ ].

Moreover, Bickel et al. [ ] propose a method to physically clone faces. Most

recently, “OpenFab” [ ] and “Spec Fab” [ a] were introduced, facilitat-

ing the design and fabrication of multi-material content.

Besides the above, our community has contributed tools and techniques to de-

sign and fabricate cloth [Okabe et al. ], paper cra [Mitani and Suzuki ;

Kilian et al. ; Chen et al. b], pop-ups [Hoiem et al. ; Li et al. ;

], plush toys [Mori and Igarashi ], reliefs [Weyrich et al. ; Alexa

andMatusik ], D puzzles [Lo et al. ; Xin et al. ; Song et al. ],

custom-mademetallophones [Umetani et al. ], holography [Regget al. ],

multilayer models [Holroyd et al. ], furniture [Lau et al. ], baloons [Sk-

ouras et al. ], caustics [Papas et al. ], andmasonrymodels [Whiting et al.

; Panozzo et al. ]. Others use shadow imagery [Mitra and Pauly ;

Baran et al. ; Bermano et al. ] and planar slices to approximate geome-

try [McCrae et al. ; Hildebrand et al. ; Schwartzburg and Pauly ],

and propose a D cu ing tool [Rivers et al. b] and D sculpting aid [Rivers

et al. a] to support humans during manual manufacturing.



. D C

Even though variants of tensile testing [Hart ] allow to identify characteris-

tics of compositematerials [Smits et al. ] and so tissue [Bursa and Zemanek

], specimen dimensions are commonly prescribed. In contrast, we aim for

systems that are easy-to-use for users unfamiliar with the mechanics of materials

and allow to sample the elastic deformation behavior of objects without the need

to alternate their rest pose geometry (preservation of an object’s static and dynamic

properties).

Tomeasure force-displacement samples of deformablematerials andhuman tis-

sue, we use a combination of stereo-vision acquisition systems and force sensors

similar to earlier approaches [Pai et al. ].

. M D B

Researchers in many elds, ranging from mechanical engineering to biology,

have long studied the problem of modeling complex elasticity properties. For a

recent survey of deformationmodels in computer graphics, we refer the interested

reader to [Nealen et al. ].

MechanicalModelsA common approach tomodel the non-linear stress-strain

behavior of complex materials and human tissue is to devise a constitutive model,

then tune its parameters until they best t empirical data. However, while hypere-

lasticmodels such as, e.g., theOgdenmodel [Ogden ] capture various behav-

ior regimes of materials and tissue well, this parameter tuning approach is tedious



and u erly complex as it relies on accuratemodeling of the layered geometry (e.g.,

the bones, fat, and muscles for facial tissue), rich excitation of material regimes,

and accurate measurement of forces and deformations (even in typically inacces-

sible regions). Despite the complexity of the approach, it has seen large applica-

tions in graphics since the pioneering work by Terzopoulos et al. [Terzopoulos

et al. ], as it can lead to stunning results with the appropriate amount of effort.

Some examples of complex bio-mechanical models in computer graphics include

the neck [Lee and Terzopoulos ], the torso [Zordan et al. ; Teran et al.

;DiLorenzoet al. ], the face [Kochet al. ;Magnenat- almannet al.

; Terzopoulus andWaters ; Sifakis et al. ], and the hand [Sueda et al.

].

Measurement-BasedModel Fi ing To circumvent the complexity of param-

eter tuning, several authors have proposed measurement-based model ing ap-

proaches. e seminal work of Pai et al. [ ] presents a capture and modeling

system for a deformable object’s shape, elasticity, and surface roughness. eir

deformable model is based on a matrix representation of Green’s function [James

and Pai ], and was later extended to increase ing robustness by Lang and

colleagues [ ], and to handle viscoelasticity by Schoner et al. [ ]. Our

approach shares their strategy for measuring surface displacements as the result

of applied forces, but, unlike theirs, is not limited to linear material behavior and

does not rely on global response functions. Sifakis et al. [ ] give a different

spin to measurement-based modeling approaches, as they learn the relationship

between facialmuscle activation and skin positions. Others, particularly in biome-



chanics, have explored measurement-based ing of parameters of various con-

stitutive models: Schur and Zabaras [ ] use non-liner least squares to esti-

mate Young’s modulus, while Becker and Teschner [ ] employ a linear least

squares formulation to estimate both, Young’s modulus and Poisson’s ratio. e

estimation of non-linear viscoelastic materials and plasticity have been addressed

by Kauer [ ] and Kajberg and Lindkvist [ ], respectively. Our work bor-

rows from these approaches for the estimation of each individual sample of the

stress-strain relationship. However, this alone is not sufficient for capturing the

rich non-linear behavior of so tissue. In contrast to previous work, the realism of

our material model is greatly enhanced with spatially-varying non-linear interpo-

lation in strain space.

Data-driven Methods Purely data-driven techniques have gained large popu-

larity in computer graphics, as they produce highly realistic results for phenom-

ena that are otherwise extremely complex to model. e interpolation of light-

eld samples [Buehler et al. ] allows simulating the illumination of complex

scenes, while data-driven re ection models [Matusik et al. ] represent each

bidirectional re ectancedistribution function(BRDF) throughadense setofmea-

surements. Data-driven methods have also been applied to several other aspects

of deformation modeling in computer graphics, such as facial wrinkle formation

from local skin deformations [Ma et al. ; Bickel et al. ], grasping of ob-

jects [Kry and Pai ], skeleton-driven cloth wrinkles [Kim and Vendrovsky

], body-skin deformation [Park and Hodgins ], or learning of skeleton-

driven skindynamics [Park andHodgins ]. Ourmethod is amixtureofmodel



ing techniques (i.e., estimating stress-strain parameters from local samples) and

data-driven methods (i.e., using tabulated stress-strain parameters and non-linear

interpolation during runtime).

Shape Modeling Another common approach to model deformations is shape

modeling [Botsch and Sorkine ]. Some of the existing approaches rely on

prede ned examples [Sloan et al. ; Allen et al. ; Sumner et al. ],

or even exploit interpolation [Bergeron and Lachapelle ; Lewis et al. ;

Blanz et al. ]. However, these techniques cannot model deformations as a re-

action to contact in the way our technique does. Some recent approaches connect

shape modeling with physically-based reactive models by rigging using templates

of forces [Capell et al. ] or skeletal interpolation of elastic forces [Galoppo

et al. ]. Yet, unlike ours, these approaches cannot model a general non-linear,

heterogeneous deformation behavior.

. P R D B

For our physical reproduction of deformation behavior, we introduce a com-

plete pipeline to acquire, model, design, and fabricate desired deformation prop-

erties using multi-material D printing. Similar reproduction pipelines have also

beenproposed for subsurface sca ering [Donget al. ;Hašan et al. ; Papas

et al. ].

While modern multi-material printers [Stratasys ] allow to print detailed

structures with spatially-varyingmixtures of so , rubber-like and hard, plastic-like

materials, we lack tools to design and reproduce such deformable materials. For



physically fabricating a desired deformation behavior, we estimate a layered ap-

proximatemodel consisting of printable basematerials, tailored formanufacturing

on such multi-material devices.

To represent our base materials, we build on our data-driven technique that we

discuss in detail in Chapter with some notable adjustments. First, by restricting

the types of materials to homogeneous ones, our model requires far fewer degrees

of freedom. Homogeneity of the basematerials is not a limitation in our case, since

we achieve inhomogeneity in the nal output materials by combining various ho-

mogeneous materials. Second, we increase the robustness of the ing process by

ing one single non-linear model to all input examples simultaneously.

Recent work in graphics aims at modeling high-resolution heterogeneities even

when the resolution of the discretization is considerably coarser [Kharevych et al.

; Nesme et al. ]. is process, known as homogenization, tries to nd pa-

rameter values of a constitutive model sampled at low resolution such that the be-

havior of the object best matches the heterogeneous material. e rst step of our

reproduction process can be considered as a variant of homogenization, where the

ne-scale inhomogeneous material is an actual physical one. In the second step,

however, we take the opposite approach to homogenization, generating a hetero-

geneous object that ts coarse force-deformation data from small-scale materials

with known behavior.

Digital materials, composed of a set of discrete voxels, can exhibit widely vary-

ing material properties [Hiller and Lipson ]. A general introduction to the

optimization of spatial material distributions can be found in [Bendsoe and Sig-



mund ].

As the design space increases exponentially with the number of possible combi-

nations of basematerials, evolutionary algorithms [Kicinger et al. ] are a pop-

ular non-linear optimization strategy. In contrast, we apply a branch-and-bound

search strategy in combination with clustering.

. F A C

In our Dmanufacturingworkon articulated characters, we estimate piecewise-

rigid, jointed volumemodels from input characters whose articulation is encoded

in its skin.

Articulated characters are widespread in computer animation, with linear blend

skinning (LBS) and example-based approaches common [Lewis et al. ;Mohr

and Gleicher ; Kavan et al. ]. Most character rigging methods either es-

timate a skeleton or LBS from a mesh [Baran and Popović ] or estimate a

skinned character model from example poses [Kry et al. ; Mohr andGleicher

; Wang et al. ] or input animations [James and Twigg ]. We focus

on articulation speci ed as a linear blend skin as it is the most widely used format.

However, current AM techniques do not support printing of skinned meshes. Ex-

isting tools only convert their appearance and shape properties and ignore their

articulation.

Because our targeted output models share strong similarities with articulated

toys such as dolls or puppets, and action gures, we draw inspiration from the large

body of patents led on this topic. ey describe many mechanical joints ranging



from basic swivel to elaborate, multi-part designs [Abbat ; Ferre ] that

overcome common structural and range shortcomings. However, none of them is

based on a geometric model of joint strength that complies with range constraints

like our hinge and ball-and-socket designs. To make our joints posable, we fabri-

cate small protrusions similar to [Grey ; Wai ] that cause friction under

joint motion but extent their ideas to prevent fusion during manufacturing.

When recasting our joint optimizations as pure geometric problems, we draw

inspiration from structural engineering [Beer et al. ]: to increase the strength

of a simple structure, civil engineers identify andmaximize its critical cross-sectional

area. In graphics, similar ideas have been used to automate the generation of truss

structures [Smith et al. ] and procedural models of buildings [Whiting et al.

].

. S -A F

Our scale-aware simpli cation formanufacturing ismost closely related tomesh

simpli cation. However, while we aim for reducing the triangle count in typical

simpli cation, we are most concerned with features too thin and ne in a manu-

facturing context.

Meshsimpli cation addresses theproblemof reducing the complexityof small

or distant models and got a tremendous amount of a ention a er Clark’s early

work [Clark ]. Prominent techniques including vertex clustering [Rossignac

and Borrel ], vertex merging [Garland andHeckbert ] based on quadric

error metrics, besides voxel-based [Cohen et al. ], envelope-based [Cohen



et al. ], and progressive [Hoppe ] approaches. However, while our tech-

nique shares the capabilities of alternating a model’s global topology properties

with [Rossignac and Borrel ; Cohen et al. ], our overall goal is to reduce

its complexity w.r.t. minimal feature sizes rather than polygon count. While we

draw inspiration from the perceptual-driven abstraction work by Mehra and col-

leagues [Mehra et al. ], we focus onmanufacturing constraints not addressed

in their work.

Mesh repairWhile we assume our input to be manifold, closed, and intersec-

tion free, our method directly applies to models consisting of several connected

components, containing self-intersections, non-manifold faces, and open bound-

aries by using Jacobson et al.’s generalizedwinding numbers [Jacobson et al. ]

as a pre-processor. For an exhaustive reviewofworkprior to [Jacobsonet al. ],

we refer the interested reader to a recent survey [A ene et al. ].

Fabricating Geometry Closely related to our work is stress relief [Stava et al.

] where the authors propose the use of local thickening, hollowing, and strut

insertion to reduce the high stresses in D models prior to printing. Our method

complements this work in that it uses global abstraction and local engraving to

gradually simplifymodelswhile avoidingweak links andnon-fabricatable features.

Medial Axis Transform (MAT) e extraction of approximate unions of me-

dial ball representations has go en a tremendous amount of a ention since Blum’s

pioneering work [ ]. Blum observed that a subset of the Voronoi diagram of

a dense enough sampling of a given curve or surface, approximates their medial

axes. In D, all Voronoi vertices lie close to the true axes for such samplings. In D,



however, only a subset of these vertices are close, even for arbitrarily dense sam-

plings [Amenta et al. ]. is observation led to thede nitionofpoles [Amenta

et al. ; Amenta and Bern ]: Voronoi vertices that are furthest away from

samples, one on either side of the surface. However, we found that this subset of

D Voronoi vertices is rather conservative leading to noisy reconstructions when

converting unions of ltered balls back to surface representations. For an exhaus-

tive review of methods to extract and process the MAT, we refer the interested

reader to a recent book [Siddiqi and Pizer ] and survey [A ali et al. ].

PowerCrust andAlphaShapesWebase our work on the rigorous power crust

algorithm [Amenta et al. a;b]: given a set of points, their algorithm computes

an approximatemedial axis and surfacemesh, referred to as power shape and crust.

Applied to the point cloud reconstruction problem, their remarkable technique

guarantees the resultingmesh to be “water-tight”, and self-intersection free. More-

over, sharp corners and edges are reconstructedwith high delity. We extend their

framework with an adaptive Poisson-disk sampling [Corsini et al. ], guaran-

teeing that corners and edges are well-preserved when processing a given input

mesh. In earlier work, Amenta and colleagues [Amenta et al. ; Amenta and

Bern ] formulated a sampling requirement for their algorithms. Our sampling

isminimalw.r.t. this requirement, keeping sampling complexity low in at regions

far from the medial axis. Furthermore, we introduce several geometric processing

operators, acting directly on the unions of medial balls representations: set union

and other boolean operators, abstraction, and engraving. Our abstraction is simi-

lar to alpha shapes [Edelsbrunner andMücke ] in that it produces a “tighter”



convex hull. However, unlike theirs, our method allows to control which concave

corners to round off and produces a manifold output.



…“Stereolithography” is a method and apparatus for mak-

ing solid objects by successively “printing” thin layers of a cur-

able material …one on top of the other.

Charles W. Hull, Inventor of D Printing

3
AdditiveManufa uring: A Primer

roughout this thesis, we exclusively use additive manufacturing (AM) tech-

nologies for the D fabrication of our models. While the above quote, taken from

the seminal patent led on this topic [Hull ], explains the essence of additive

manufacturing well, we herea er give the unfamiliar reader a brief introduction.

We start with a comparison of additive manufacturing to traditional, subtractive



manufacturing (SM) in Section . , followedby anoverviewof contemporaryAM

technologies in Section . . Subsequently, we review multi-material printing in

Section . and conclude with a discussion on printing assemblies in Section . .

. A . S M

Similar to the way a D printer prints a document line-by-line, a D printer

builds a given model layer-by-layer. As opposed to adding materials, traditional

subtractive manufacturing such as milling, cu ing, or drilling remove materials.

AMhas several advantages over traditional manufacturing techniques. While sub-

tractive processes offer higher exibility in the selection of end-usematerials, they

place severe limitations on the input geometry. Models with undercuts (areas

where one part of the model overhangs another) cannot be fabricated using tra-

ditional manufacturing techniques. Almost all AM technologies overcome these

geometric limitations by using a supporting structure that can be removed a er

printing. Such supporting structures can either be made of less densely printed

build material – the material the nal part is made from – or an additional support

material.

. C AMT

We can categories current AM technologies according to type (how layers are

deposited) and materials. Among the rst and most prominent are extrusion-

based techniques such as fused deposition modeling (FDM). FDM devices un-



wind laments (mostly thermoplastics) from a coil to a heated extrusion nozzle

which melts and drops the material onto the printing tray. ey typically use less

densely printed build material for the supporting structure.

A second category are formed by technologies that use granulated materials

(e.g., plastic, metal powders, or plaster). ese techniques build up a granular bed

layer-by-layer, fusing the material powder at cross-sections of the rasterized D

model. While lasers (selective laser sintering, SLS) or droplets of binding materi-

als (inkjet D printing) are commonly used for the fusing, they all use the unfused

material to support overhanging parts. A closely related category is laminated ob-

ject manufacturing (LOM) where laser cu ing is used to trace along contours of

cross-sections at the top sheet of a stack of glued paper, plastic or metal laminates.

Currently highest resolution systems rely on photopolymerization and produce

solid parts by curing a liquid resin using light activation. While stereolithography

(SLA) – the oldest technology in this category – is similar to laser sintering in that

it uses lasers to harden the resin in a layer-by-layer manner, the material bed is a

uid rather than a granulate.

. M -M P

While truemulti-material printing is yet in its early stages [Lipson ;Alonso

], commercially available systems such as the Objet Connex series [Stratasys

] use blends ofmaterials that are all based on suchphotopolymer resigns. Ma-

terial is deposited from prede nedmixtures of currently two liquids and solidi ed

a er deposition of each layer using UV light. e two sealed cartridges, holding



the liquids, can be replaced with other pairs, leading to materials with different

properties. Objet’s support material is gel-like and can be removed with a water-

jet and their Connex printer has a resolution of DPI on the horizontal x

and y axis, and DPI on the vertical z axis.

Despite the shared material base, we can currently print with subsets of over

a different materials with characteristics ranging from rubber- to plastic-like,

within the same model and print job. While we cannot reproduce materials ex-

actly, we can approximate, e.g., a given deformation behavior reasonably well as

we will see in Chapter .

. P A

While traditional manufacturing of models with movable parts commonly in-

volves a manual assembly step, we can fabricate such assemblies in a single print

job when using AM as we illustrate in Figure . . with a hinge joint example. Al-

though the tolerance between movable parts needs to be calibrated for each ma-

terial and AM device, the design andmanufacturing of highly complex assemblies

such as our articulated characters in Chapter , is greatly facilitated.

Unlike with AM, such a hinge joint would need to be split into at least three

parts for subtractive processes as we cannot directly assemble the nal hinge from

the upper and lower components.



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.4.1: Printing Assemblies With AM, we can manufacture a hinge
joint (a), consisting of two movable parts (b-d), without the need for manual
assembly. We build the assembled model layer-by-layer (e-k), filling the model
volume with build (in gray) and voids with support material (in blue). As long
as we keep a minimal tolerance between movable parts, the support material
can be removed, resulting in a fully functional mechanical hinge.



An algorithm must be seen to be believed.

Donald Knuth

4
CapturingDeformation Behavior

In this chapter, we introduce our data-driven representation andmodeling tech-

nique for simulating non-linear, heterogeneous materials and so tissue. Our ap-

proach simpli es the construction of convincing deformable models by avoiding

complex selection and tuning of physical material parameters, yet retaining the

richness of non-linear heterogeneous behavior (compare with Figure . . ).



Figure 4.0.1: Modeling Deformation Behavior (from left to right): Force-
and-deformation capture of a non-linear heterogeneous pillow; synthesized defor-
mation with fitted material parameters; and interactive deformation synthesized
with our data-driven modeling technique.

A er further motivating the need for a data-driven material representation in

Section . , we formally introduce our deformable model in Section . . ere-

upon, we discuss how we estimate model parameters from a set of example de-

formations (Section . ), acquired using a hand-held measurement system (Sec-

tion . ). We present the results of our approach for several non-linear materials

and biological so tissue, with accurate agreement of our model to the measured

data in Section . , and conclude with a discussion and summary (Sections .

and . ). Wewill build upon the here presented data-drivenmaterial model in our

physical reproduction and fabrication work, discussed in the next chapter.

. I

Recent years have witnessed signi cant progress of physically-based deforma-

tion models. Numerous researchers have combined Newtonian mechanics, con-

tinuum mechanics, numerical computation and computer graphics, providing a

powerful toolkit for physically-based deformations and stunning simulations, with

application in feature lms, video games, and virtual surgery, among others.



However, achieving realistic deformations of a complex behavior requires care-

ful choices for material models and their parameters. Many real-world objects

consist of heterogeneous materials, requiring spatially-varying material parameters

such as, e.g., Young’s modulus and Poisson’s ratio. Se ing them is a difficult and

time-consuming process. Even more challenging is the problem of material non-

linearities. Most materials, for example rubber or biological so tissue, show non-

linear constitutivebehavior, i.e., a non-linear relationshipbetween stress and strain.

Despite thewide variety of non-linear constitutivemodels in the literature, such as

thepopularhyperelasticNeo-HookeanandMooney-Rivlinmodels [Ogden ],

material modeling is still an active research area in material science. Nonetheless,

non-linear physics equations are o en simpli ed approximations to real material

behavior, and choosing the appropriate model as well as tuning its parameters are

extremely complex tasks.

Our technique employs nite element methods and exploits a set of measured

example deformations of real-world objects, thereby avoiding complex selection

of material parameters. Refer to Figure . . : we transfer every measured exam-

ple deformation into a local element-wise strain space, and represent this exam-

ple deformation as a locally linear sample of the material’s stress-strain relation.

We then model the full non-linear behavior by interpolating the material samples

in strain space using radial basis functions (RBFs). Finally, a simple elastostatic

nite-element simulation of the non-linearly interpolated material samples based

on incremental loading allows for efficient computation of rich non-linearmaterial

simulations.
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Figure 4.1.1: Acquiring and Modeling Non-Linear Quasi-Static Deforma-
tion Behavior (from left to right): An object is probed with a force sensor to
acquire several example deformations, the applied force direction, and the force
magnitude. For every measurement, we estimate its stress-strain relationship
and represent it as a sample in strain space. During runtime, we interpolate
these samples in strain space using radial basis functions (RBFs) to synthesize
deformations for novel force inputs.

Earlier work in graphics and robotics also proposed acquisition-based model

ing as a means for obtaining deformable object representations [Pai et al. ;

Lang et al. ; Schoner et al. ], but was limited to linear material models

with global support. In contrast, our work is the rst to represent complex non-

linear heterogeneous materials through spatially-varying non-linear interpolation of

local material properties. Together with our hand-held system for deformation

capture from Section . , our modeling pipeline is also distinct for its simplicity.

We present an efficient and robust algorithm for ing the local strain-space

material samples and demonstrate the effectiveness of our data-driven modeling

method for several non-linear materials and biological so tissue. e combina-

tion of simplicity and efficiency, both in acquisition and computation, and the

high-expressiveness of the results make our technique applicable for interactive

applications in computer graphics and other elds.



. M N -L M

In this section,wedescribeour representationofnon-linear heterogeneous elas-

ticmaterials, andhow this representation is used formodeling anobject’s deforma-

tion behavior. We rst give an overview of the representation, and then describe

how we parameterize the materials and how this parameterization extends from

the continuum se ing to a nite element discretization. We also explain how we

support material non-linearities through interpolation of local linear models, and

nally we describe our algorithm for computing non-linear elastostatic deforma-

tions based on incremental loading.

. . O A

Inmaterials science, (one-dimensional) elasticity properties have long been de-

scribed through stress-strain curves. Inspired by this popular representation, we

opt formodeling three-dimensional elastic properties by sampling the stress-strain

function at various operating regimes and interpolating these samples in strain-

space (see Figure . . ).

More speci cally, we characterize each sample of the stress-strain function us-

ing a (local) linear constitutive model. en, in order to capture material non-

linearity, we de ne the parameter values of the constitutive model at an arbitrary

operating point through sca ered-data interpolation in strain-space. Moreover, in

order to capturematerial heterogeneity, we compute both the stress-strain samples

and the sca ered-data interpolation in a spatially-varying manner. Figure . .



Figure 4.2.1: Spatially-Varying, Strain-Dependent Young’s Modulus Two
examples of a deformed pillow with color-coded Young’s modulus (‘blue’ is low,
‘red’ is high), which varies both as a function of location and the local strain.
Probe pressure was higher on the right.

showsexampledeformationswith color-codedYoung’smodulus,whichvariesboth

as a function of the location and the local strain.

It is worth noting that our model can capture elasticity properties, but not plas-

ticity or viscosity, among others. Our model builds on FEM and linear elastic-

ity theory, and we refer the interested reader to books on the topic [Bathe ;

Hughes ].



. . D P

Weuse linear co-rotational FEM to locally represent a deformable object’s elas-

tic properties. In otherwords, given an object’s deformed con guration, wemodel

the stress-strain relationship with linear FEM. We capture non-linearity by vary-

ing the parameters of the stress-strain relationship as a function of the strain itself.

Givenadisplacement eldu, the linear co-rotationalFEMemploysCauchy’s linear

strain tensor ε(u) =
(
∇u+ (∇u)T

)
. Invariance of the strain under rotations is

obtained by extracting the rotational part of the deformation gradient through po-

lar decomposition, and thenwarping the stiffnessmatrix [Müller andGross ].

Because both, the strain and stress tensors, are symmetric, we can represent

both as -vectors. Given the strain tensor, we construct the -vector as

ε = (εxx εyy εzz εxy εxz εyz)
T, ( . )

and similarly for the stress. e local linear material yields then a relationship

σ(u) = Eε(u) ( . )

between strain and stress. For each element (in our case, a tetrahedron), assuming

locally linear isotropic material, the × stress-strain relationship matrix E can

be represented by Young’s modulus E and Possion’s ratio ν

E =
E

( + ν)( − ν)
(G+ νH) , ( . )



with the two constant matrices

G = diag ( , , , . , . , . ) ( . )

and

H =



−

−

−

−

−

−


. ( . )

is parametrization is intuitive, where Poisson’s ratio ν is unit-less and describes

material compressibility, whileYoung’smodulusEde nesmaterial elasticity. How-

ever, we employ an alternative parameterization (λ, α) that allows us to describe

the stress-strain relationship as a linear function of the parameters [Becker and

Teschner ]:

E = λG+ αH, ( . )

with

λ =
E

( + ν)( − ν)
and α = λν. ( . )

e parameter α is also known as Lamé’s rst parameter in elasticity theory,

whereas λ is not directly related to any elasticity constant. With the (λ, α) param-

eterization, the stiffness matrix and the elastic forces become linear in the param-

eters. We exploit this property in our parameter ing algorithm in Section . . .



e per-element stiffness matrix can be wri en as

Ke = λeVeBT
e GBe + αeVeBT

e HBe, ( . )

whereVe is the volume of the element (i.e., tetrahedron), andBe is amatrix depen-

dent on the initial position of the element’s nodes. e complete stiffnessmatrix is

obtained by assembling the warped per-element stiffnessmatricesReKeRT
e , where

Re is the element’s rotation. By grouping all material parameters {λe, αe} in one

vector p, the stiffness matrix is parameterized asK(p).

. . S -S I

We describe the non-linear material properties through sca ered-data interpo-

lation of known local linear parameters in an element-wise manner. We obtain

these known local parameters from a set of example deformations, largely simpli-

fying an artist’s job of tuningmaterial parameters for complex non-linear constitu-

tive models.

Let us assume a set of M known example measurements, each with a corre-

spondingelement-wise strain vectorεi ∈ R andaparameter vectorpi = (λi, αi)T.

Recall that we use a rotationally-invariant strain by extracting the rotation of the

deformationgradient throughpolardecomposition [Müller andGross ]. Our

non-linear strain-dependent material p (ε) is formed by interpolating linear mate-

rial samples pi (εi). At a given deformed con guration, the non-linear material

is represented by the corresponding linear material that achieves the same force-

displacement relationship. Note that we do not exploit linearization in the more



Figure 4.2.2: Captured and Synthesized Deformations (Foam) (two left-
most columns): comparison of captured and synthesized deformations for a
foam block. (two right-most columns): examples of interactive deformations
produced by sliding a cylinder on top of the model.

traditional way of capturing the local slope of a non-linear function.

For each element, we de ne the stress-strain relationship through sca ered-

data interpolation in the strain-spaceR using radial basis functions (RBFs). e

element-wise function describing the material, p(ε) : R → R , has the form

p (ε) =
M∑
i=

wi · ϕ (||ε− εi||) , ( . )

where ϕ is a scalar basis function, and wi ∈ R and εi are the weight and feature

vector for the i’thmeasurement, respectively. We employ the biharmonicRBFker-

nel ϕ (r) = r. is globally supported kernel allows for smoother interpolation of

sparsely sca ered example poses than locally supported kernels, and avoids diffi-

cult tuning of the support radius [Carr et al. ].

As a preprocess, we compute the RBF weights wi. is reduces to solving T

linearM×M systems for a deformable object withT elements due to the fact that



the stress-strain relationship is an element-wise description of the material. is

also leads to sca ered-data interpolation of thematerial parameters in a rather low-

dimensionalR domain. In contrast, interpolation of material properties is much

more complicated in earlier approaches based on linear models with global sup-

port [Pai et al. ] due to the extremely high dimensionality of the parameteri-

zation.

. . E FEMS

We compute novel deformations using an elastostatic FEM formulationKu =

F, where the forceF includes, amongothers, the load produced by a contact probe.

To correctly capture thematerial’s non-linearity during the deformation, we apply

the load of the probe gradually, and solve the elastostatic FE problem for each load

increment. In other words, at each loading step we measure the current strain ε,

we compute thematerial parametersp (ε) bymeans of the interpolation described

above, we formulate the elastostatic problem, and we solve it for the new defor-

mations. e incremental loading procedure ensures that the non-linearity of the

material is correctly captured during the complete deformation process, with the

material parameters depending on the strain at all times.

For contact handling, we compute a distance eld for the rigid probe object

that produces the deformations. We test for collisions between points on the de-

formable object and the distance eld and, upon collision, we compute the pen-

etration depth and direction. We then de ne a linear force eld at each colliding

point and solve the FEM simulation through iterative quasi-static simulation. At



each iteration of the quasi-static FEM simulation, we rst compute the material

parameters for the current con guration based on the interpolation algorithm de-

scribed above. en, given the stiffness matrix and the linear collision force eld,

wede ne aquasi-static problemand solve for thenewdisplacements. Wecompute

several iterations until an equilibrium is reached.

. F M P

We now describe how we compute the actual material parameters for a given

object. is consists of two parts: rst, estimating parameter values for each de-

formation example, and second, selecting a suitable basis from all the deformation

examples.

. . P E A

In order to estimate a sample of the stress-strain relationship, we apply a known

input force to the object under study. For each captured deformation we can dis-

tinguish three different regions on the object’s surface: (i) the probing region,

with measured non-zero forces and measured displacements, (ii) the a ached re-

gion, with unknown forces and zero displacements, and (iii) the free region, with

zero forces and measured displacements. We use x̄ and F̄ to denote the vectors

of known displacements and forces, respectively, at the points corresponding to

mesh nodes in the model.

Given measured displacements and forces, we compute spatially varying mate-



rial parameters p as:

p̂ = argmin
p

{
n∑
i=

||xi(p, F̄)− x̄i|| + γ||Lp||

}
, ( . )

where xi(p, F̄) denotes the position of a mesh node as a function of material pa-

rameters and the measured forces. e sparse Laplacian matrix L enforces spa-

tial smoothness of parameters. We employ the umbrella operator [Zhang ]

(Lp)i =
∑

j wi,j(pi − pj), where i and j refer to tetrahedron labels, and wi,j = iff

two tetrahedra share a vertex. is regularization is required to prevent over ing

due to noise in the acquired data. is is also mathematically required to obtain a

well-posed problem because the number of parameters is always twice the num-

ber of tetrahedra, |p| = T, whereas the number of measured positions |x̄| = n

may be smaller, which would result in an underconstrained problem. We also con-

sidered sca ered data interpolation of material parameters in object space as an

alternative for addressing the underconstrained problem, but it would be difficult

to decide where to place the samples for highly heterogeneous objects.

We use the Levenberg-Marquardt algorithm [Levenberg ] to iteratively

minimize the non-linear residual Equation . . We derive the Jacobian matrix

in the Appendix A. Instead of de ning the residual in terms ofmeasured positions,

the error functional could also be described in terms of measured forces [Becker

and Teschner ], yielding a linear optimization problem. However, our ob-

servations have shown that this approach is unstable when the force-displacement

relationship is not close to linear material behavior.



. . S -S B S

Amaterial capture session consists of capturingN example deformations, from

whichweobtain the trainingdataset ofNparameter vectors for each element in the

mesh. However, this dataset may be rather large, and we are interested in selecting

a compact set ofM basis parameter vectors for each element. Note thatM need

not be the same for all elements.

We select the basis in the same greedymanner as proposed byCarr et al. [ ].

We start by se ing a parameter vector at zero strain with the average parameters

computed for very small-strain deformations. We then add the parameter vector

with largest error, until a given error tolerance is achieved. A er each parameter

vector is added to the basis, we need to compute the RBF weights that best t the
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Figure 4.3.1: Evolution of Fitting Error

parameter vectors for allN ex-

ample deformations in a least-

squares manner, as described

in Equation . . e inset g-

ure on the right shows the evo-

lution of the ing error for

the foam block in Figure . . .

is error plot accumulates the error for all captured deformations, not only those

added to the basis. e error drops quickly a er adding the second parameter vec-

tor to the basis because the rst vector may not represent the average material be-

havior well. We will provide more details on the validation of our method in the

next section.



(a) (b)

Figure 4.4.1: Trinocular Stereo Vision System Our trinocular stereo vision
system consists of three high-resolution cameras (indicated in red) and two to
three light sources (indicated in green). The cameras are arranged in a triangular
setup, which helps maximize visibility during capture of a contact interaction.
The light sources ensure uniform illumination during the acquisition.

. D A

We developed a simple data acquisition system consisting of force probes and

a marker-based trinocular stereo system. Deformations are induced by physical

interaction with the object. We decided to use a marker-based system due to its

simplicity, robustness, and independence of the object’s surface properties.

. . T S V S

Figure . . showsour trinocular stereovision system, consistingof threeCanon

D cameras that capture images at a resolution of × . ese cameras are



(a) (b)

Figure 4.4.2: Contact Probe (a) Contact probe with integrated force sensor.
(b) From left to right: USB Interface Kit, Force Sensing Resistor (red circle),
Phidget Voltage Divider, and connection cable.

placed in a triangular con guration to minimize occlusions caused by the contact

probes during data acquisition. We built an external trigger device to synchronize

the three cameras, and use additional light sources to ensure uniform illumination

during the acquisition process. e surface displacement during static deforma-

tions is measured using a set of markers that we paint on the object’s visible sur-

face. Our system is capable ofmeasuring viewpoint-registeredmarker positions to

an accuracy of< mm.

We built contact probes with arbitrary shapes and circular disks of different di-

ameters a ached to the tip of a long screwdriver (see Figure . . ). We estimate

the position and orientation of the contact probe using two markers on the white

sha of the screwdriver. To measure the magnitude of the contact forces we use

a . inch Force Sensing Resistor (FSR) (Item S- - -FS ) connected to a

Phidget Voltage Divider (Item S- -P ) and USB Interface Kit / / (Item



C- -P ) by Trossen Robotics. e force sensor’s read operation is synchro-

nized with the external camera trigger signal.

. . E D

To process the acquired data, we rst identify corresponding marker positions

in the captured images, then reconstruct their D locations. erea er, we register

the markers to a template mesh, recovering positions lost due to occlusions also.

For the extraction of markers from the three sets of frames, we use standard im-

age processing: per-color thresholding in the CIELab space, followed bymorpho-

logical closing. D marker positions are then estimated by averaging locations of

pixels belonging to -connected components in the resulting binary images. is

procedure, even though simple, allows for a robust extraction of markers.

To reconstruct our markers in D, we rely on accurate depth and correspon-

dence estimation. To this end, we calibrate our trinocular system using Bouguet’s

toolbox [ ] and automatically establish marker correspondences within and

across the three different views using proximity measures.

Given a template mesh such as, e.g., a face scan, we register the Dmarker loca-

tions using a quaternion-based formulation [Micheals and Boult ] of Horn’s

shape matching algorithm [ ]. While we avoid almost all marker occlusions

with our three-view system, we employ a linear shell-based formulation [Bickel

et al. ] with prescribed displacements (visible markers) as boundary con-

straints, minimizing surface stretching and bending to estimate displacements of

occluded markers.



Figure 4.4.3: Sampling Deformation Behavior Our hand-held system enables
the non-invasive acquisition of force-displacement samples of facial tissue (top)
and physical objects (bottom).

Refer to Figure . . : Our system enables the non-invasive sampling of defor-

mation behaviors of a wide range of physical objects (bo om) and facial tissue

(top). Moreover, our hand-held probes facilitate the capture at arbitrary locations,

varying angles, and with custom contact shapes.

. R

Model Evaluation: We have evaluated the quality of our material capture and

modeling technique on several real-world objects, including two foam blocks, a



Figure 4.5.1: Modeled vs. Real Deformations Comparing real (top) and
modeled (bottom) deformations with a different contact probe than the one
used during the data acquisition phase.

heterogeneous so pillow, and a human face.

Figure . . shows a foam block with homogeneous material. We acquired

deformation examples, well distributed over the foam to induce deformations in

all , tetrahedraof ourmodel. We then constructed thenon-linearmaterial rep-

resentation, with bases of samples per tetrahedron on average, using the proce-

dure in Section . . . Even though the object is homogeneous, it should be noted

that the material parameters that were estimated for each input example are non-

homogeneous due to non-linearities in the stress-strain relationship. e average

ing error for the captured deformations is less than mm (see inset gure in

Section . . ). Figure . . shows synthesized deformations produced with our

technique using a probe with a larger, different contact area than the probe used

for data acquisition.

To compare our model to a uniform linear co-rotational model we use the ho-

mogeneous foam shown in Figures . . and . . . We captured deformation

examples with the probe near the center of the block andmodeled the object with



measured ours linear co-rotational

Figure 4.5.2: Linear Co-Rotational vs. Our Method Comparison of defor-
mations using our method vs. an average-fit linear co-rotational model.

, tetrahedra. We computed an average- t linear co-rotational model that best

approximates all the input deformations. As shown in Figure . . , our model

(blue) accurately captures thehyperelastic behavior of the foam,while the average-

t linear co-rotationalmodel (green)underestimates thedeformationat small force

values andoverestimates it at largeones. In addition, the linear co-rotationalmodel

suffers from element inversion for large forces.

Our model is of course not con ned to the contact shapes that were used dur-

ing data acquisition. Figure . . shows a side-by-side comparison of our model

(bo om) to real deformations (top) using a different contact probe than the cir-

cular onewe used for data acquisition. We captured the applied forcewith the new

contact probe, and then distribute it uniformly in the simulated se ing. e gure

shows high correspondence between the real and simulated scenarios. We refer

the reader to the accompanying video for an animated side-by-side comparison.



Figure 4.5.3: Virtual Block

To evaluate the sensitivity of our capture and

modeling approach tomeasurementnoisewecre-

ated example deformations of a virtual blockwith

three layers of user-de ned non-linear materials

(see inset gure). We then evaluated the accuracy

in matching these deformations with our model

under different levels of noise in the input data. Speci cally, we applied Gaussian

noise with a variance of %, % and % to the input displacements and then

measured the L error for all deformations and error levels. On average, we obtain

an error of . % of the maximum displacement for the case without error, and

. %, . % and . % for the cases with %, % and % input noise, respec-

tively.

Figure . . shows a pillow object with heterogeneous behavior even in its rest

state. e screenshots compare the captured deformations with the deformations

of the , tetrahedra model synthesized with our algorithm. e gure also

shows screenshots of deformations at interactive frame rates of about Hz on

a standard PC.

Facial Deformation: We have also applied our data-driven capture and mod-

eling technique to the challenging task of facial deformations, as shown in Fig-

ure . . . We have modeled the facial tissue with a single layer of , tetrahedra

that are a ached to a low-resolution skull model. To model the sliding contacts

between the tissue and the skull we use the same contact handling as for the probe

object (see Section . . ). Given the deformation of the tetrahedral mesh, we



Figure 4.5.4: Captured and Synthesized Deformations (Pillow) (two left-
most columns): comparisons of captured and synthesized deformations for a
heterogeneous non-linear pillow. (right column): interactive deformations of
the model produced by pushing (top) and pulling (bottom).

compute the deformation of a high-resolution triangle mesh using a smooth em-

bedding based onmoving least squares interpolation like Kaufmann et al. [ ].

Note that our face model does not correctly capture all types of deformations

because we use a model with closed lips, and all the deformation examples in the

training dataset were captured with relaxed muscles and closed jaw. Nevertheless,

the model is able to produce compelling deformations even without anatomically

correct modeling of the musculoskeletal structure of the face.

. L F D

Our work suggests a highly innovative approach to non-linear material mod-

eling, but it also suffers from limitations. Due to its formulation, our technique

is currently limited to capturing elastic properties. A fully dynamic simulation of



Figure 4.5.5: Captured and Synthesized Deformations (Face) (left): cap-
ture of facial deformations; (middle): synthesized deformations for the captured
examples; (right): frames of an animation with a cylindrical probe pressing on
the cheek.



materials would require capturing other properties such as viscosity and plasticity.

One interesting conclusion of our work is that it is o en possible to obtain com-

pelling surface deformations with a volumetric meshing unaware of an object’s ac-

tual volumetric structure. is is of course not valid for all situations. For example,

our facemodel could be greatly enhancedwith accurate lip contact and jawmotion

models.

ere are several aspects of our model that deserve further exploration. One

of them is its ability for capturing anisotropic behavior. e underlying linear

co-rotational material model that we use for representing deformation samples

can only capture isotropic behavior, but deformation samples with the same total

strain but in different directions will lead to anisotropic behavior. In other words,

we locally model the material isotropic in strain space, yet strain-space interpola-

tion of material parameters provides global anisotropic behavior. It is worth ex-

ploring to what extent our approach captures anisotropy.

Another aspect that deserves further analysis is the formulation of the quasi-

static deformation problem. Given a certain strain, we employ a local linear co-

rotational model to formulate a quasi-static deformation problem. However, our

model is not strictly a local linearization, which means that the stiffness matrix of

the quasi-static deformation problem does not employ correct force derivatives.

At the same time, our linear model is more robust than a model obtained by local

differentiation and avoids non-passive regimes.

Similar to other approaches, our parameter ing algorithm is formulated as a

minimization problem andmay end up in a local minimum. In fact, we have iden-



ti ed ing error as the major source of potential inaccuracies in the deformation

synthesis. Sometimes, ing error also appears because we limit Poisson’s ratio to

physically valid values during the minimization. Robust parameter identi cation

is still an open research problem in material science, and some recent approaches

explore alternative solutions including particle lters [Burion et al. ]. Multi-

resolution ing may be another way of increasing robustness.

Finally, using a more efficient parameter estimation algorithm for material t-

ting, one could evaluate the need for further samples of the stress-strain relation-

ship online, and determine the optimal probing pa erns on the y.

. S

Wehave presented a novel data-drivenmethod formodeling non-linear hetero-

geneous materials. e major practical contribution of our work is the ability to

model rich non-linear deformations in a very simple manner, without the com-

plex task of carefully choosing material models and parameters. Instead, our data-

driven method relies on a simple-to-build acquisition system (see Section . ), a

novel representation of the material through spatially-varying interpolation of t-

ted linear models, and a simple deformation synthesis method.

In the next chapter, wewill use our data-driven deformationmodel to represent

our homogeneous base materials, a layered combination of which allow us to re-

produce and fabricate a desired deformation behavior. Assuming homogeneity,

we signi cantly increase the robustness of our ing process, by ing a single

non-linear model to all acquired force-displacement pairs.



If you come to a fork in a road, take it.

Yogi Berra

5
FabricatingDeformation Behavior

In this chapter, we introduce a data-driven process for fabricating a desired de-

formation behavior using multi-material AM devices. Our process takes example

deformations, either acquired using an automated measurement systems, or sam-

pled from a virtual deformation simulator, as input. Given the input, we then esti-

mate an approximate model consisting of a layered set of base materials, ready for



Figure 5.0.1: Physically Replicating Deformation Behavior Given the defor-
mation behavior of real world objects in form of measured example deformations,
we estimate layered approximate models, tailored for 3D manufacturing using
multi-material AM technologies. Our replicas’ deformation properties are in high
agreement with those of the input.

D printing (see Figure . . ). To represent these base materials, we adopt our

data-driven deformable model from the previous chapter.

Automating the fabrication of virtual and real deformation behavior is of high

practical relevance as we point out in Section . . We then describe the adjust-

ments to our data-driven model to represent our homogeneous base materials.

e adjusted model has fewer parameters than the original (Chapter ), leading

to an increase in ing robustness (Section . ). erea er, we introduce our

optimization that identi es the best combination of stacked layers of base materi-

als in Section . . We demonstrate our complete process by physically replicating

complex heterogeneous materials in Section . .

. I

Elastically deformingobjects areomnipresent inour everyday live (e.g, our shoes,

or chair cushions) andwidely used in physics-based animation to increase realism.

Yet, we lack algorithms for their automated fabrication using multi-material AM



devices. As mentioned in Chapter , these devices are capable of manufacturing a

variety of so and hard materials with complex internal structures, making it pos-

sible to fabricate complex D objects with aggregate materials quickly, inexpen-

sively, and with high accuracy. Despite these technical advances, we do not have

tools at our disposal that aid us with the design of such multi-material content.

We present a goal-based design process that, provided with a set of example de-

formations, physically reproduces the sampled behavior using a layered approx-

imate model and a multi-material AM device (compare with Figure . . ). For

validation purposes, we compare probes of real world objects and their replica,

measured with our automated acquisition system (Section . ). However, we are

bynomeans restricted to de ne a desired behavior using acquired samples. Probes

can also be taken from simulations of deformablemodels, enabling the fabrication

of digital content and, hence, providing us with a design interface.

. O

We have collected a database of base materials, fabricated using a Connex

multi-material D printer, but also a variety of standard foams, gels, and rubbers

purchased from theMcMaster-Carr catalogue. esematerials span a wide gamut

of different deformations: from very so to very hard and rigid (see Section . ).

Weautomaticallymeasuredeformationsof thesebasematerials subject todifferent

forces using our robotic system (Section . ).

Next, we representourbasematerials using adata-drivennon-linear stress-strain
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Figure 5.1.1: Goal-Driven Design of Deformable Materials

relationship in a Finite ElementMethod (FEM) (Sections . and . ). is com-

pact representation allowsus topredict deformations of thicker or thinner versions

of the base material samples. More importantly, we show that we can accurately

predict deformations of arbitrary combinations of stacked base materials.

As the last step, we design composite materials that best match a desired defor-

mation behavior using our combinatorial optimization algorithm (Section . ).

In order to simplify the material design process, we introduce a goal-based opti-

mization approach. e user speci es a material by providing example deforma-

tions and their corresponding forces, and our algorithm automatically computes

the best-matching composite material. Because the con guration space is com-

binatorial and exponentially large, we use an efficient search strategy that prunes



away states that yield poor matches to the desired material speci cations.

We validate the simulation and material model by fabricating a number of dif-

ferent composite materials, measuring their deformations subject to a variety of

different forces and comparing these measurements to the results of the simula-

tion. We describe the results in Section . .

. N -L M M

All our base materials exhibit a non-linear hyper-elastic stress-strain behaviour,

as demonstrated by themeasured force-displacement curves in Figure . . . Most

of our base materials consist of complex structures which in uences the deforma-

tion behavior signi cantly (see Figure . . ). We use our data-driven approach

from Chapter to represent such non-linear behavior. Recall that our model cap-

tures such non-linearities by a non-linear interpolation of locally linear material

properties. We obtain these linear properties from example deformations, probed

from base materials in this context.

For linear materials, Hooke’s generalized law

σ(u) = Eε(u) ( . )

describes the relation between strain and stress with a × material-dependent

matrix E.

e key for achieving the non-linear behavior of our base materials is to de ne

the matrix E as a function of local strain ε(u). And, because we can typically pa-



rameterize E with fewer parameters p, we de ne these parameters to non-linearly

depend on ε(u), resulting in a non-linear material representation E(p(u)). Al-

though this approach holds for general anisotropic behaviour, we describe subse-

quently the parameters p for two types of materials that are most relevant in prac-

tice: isotropic and transversely isotropic ones. We defer the discussion of trans-

versely isotropic material to Section . .

. . I M

For homogeneous linear isotropic materials, the matrix E can be represented

by the two Lamé parameters λ and μ, hence, we have p = (λ, μ). Using Lamé’s

parameters, the stress and strain tensors are related as

σ(u) = με(u) + λtr(ε(u))I, ( . )

from which the matrix E can be derived [Bathe ].

In homogeneous linear isotropic materials, the strain is well captured by the

three invariants of the symmetric strain tensor I (ε), I (ε), I (ε). ese invariants

do not change under rotation of the coordinate system. Using the invariants to

represent the strain, our non-linearmaterialmodel can be considered as a -valued

function in a -dimensional domain, p(I , I , I ) : R → R .

. . N -L I M P

Given a base material, we describe its non-linear stress-strain relation through

a small set of P parameter vectors, {pi}, corresponding to different strain values,



{εi}. en, using the (parameter, strain) pairs as centers of Radial Basis Functions

(RBF), we de ne the complete material behavior through RBF interpolation (see

Chapter ):

p (ε) =
M∑
i=

wi · ϕ (||ε− εi||) , ( . )

Since our base materials are homogeneous, a single set of parameter vectors is

sufficient to describe the behavior of an arbitrary object consisting of a single base

material. is reduces the number of parameters of a basematerial to |p| ·P, where

|p| is the cardinality of the parameter vector ( for isotropic materials, and for

transversely isotropic ones). In our examples, the number of RBF centers is typi-

cally between P = for the isotropic foams and P = for printed materials with

complex internal microstructure. Computing the RBF interpolation based on the

local strain in a spatially-varyingmanner allows us to simulate different non-linear

behavior in different regions of an object.

In order to simulate the behavior of composite objects made of base materials,

we follow the quasi-static FEMapproach described earlier in Section . . : given a

simulation state, we compute the strain of all elements and perform a per-element

computation of the parameter vector according to . . We then recompute the

per-element stiffness matrices, and perform a new step of the FEM simulation.

. F B M

We estimate the properties of base materials such that simulated deformations

matchbest a set of input examples. Inour ingprocess, we compute theRBFcen-



ters {εi} (i.e., strain values used as data points), and their corresponding weights

wi (see Equation . ). Assuming the P RBF centers to be known, we compute

the RBF weights w as follows: given a set of example deformations of measured

displacements {x̄i} and corresponding forces F̄i, weminimize the error in the dis-

placement using

ŵ = argmin
w

{
n∑
i=

||xi(p, F̄i)− x̄i||

}
. ( . )

To de ne the RBF centers, we rst t a homogeneous linear material to obtain

a constant set of material parameters. Using these parameters, we run FEM simu-

lations for all measurements, and record strain values. We select the RBF centers

by sampling the strain space with P points that cover the range of measured values

well. Using these RBF centers, we can t the material parameters but run several

iterations to obtain a be er coverage of the strain space.

ere are two main differences between our material ing strategy and the

one proposed earlier in Section . . . First, since the base materials are homo-

geneous, the RBF weights are not spatially-varying, and the size of the problem

reduces to |p| · P. Second, the objective function is de ned by grouping the mea-

sured displacements of all example deformations at once. ese two differences

lead to improved robustness and ing accuracy.

As before, we use Levenberg-Marquardt optimization and compute the Jaco-

bians as described in Appendix A. However, an unconstrained minimization may

lead tomaterial parametersnotphysically feasible, causing instabilitiesduringFEM



simulations. In case of isotropic materials, we bound Lamé’s parameters by com-

puting the corresponding Young’s modulus and Poisson’s ratio, then projecting

them to physically feasible ones. For transversely isotropic materials, we ensure

that the stiffness matrix stays positive de nite using the technique by Rebonato

and Jäckel [ ].

Ourmeasured forces F̄ are normal to the surface. However, the contact area be-

low the force probe also undergoes small tangential forces during acquisition, and

we found that these missing forces cause ing errors. Hence, we compute these

missing tangential forces by constraining probed surface points to fall together.

We then reintroduce these tangential forces as known forces, leading to increased

quality of our ing. We evaluate our ing by reporting errors when comparing

simulated base materials to measurements in Section . .

. G -D M D

Our goal-based material design approach approximates a desired deformation

behavior with a composite of base materials. We now describe the optimization

algorithm to obtain composite structures made of a set of base materials. Our

algorithm receives as input a description of the object surface, examples of de-

sired force-displacement pairs, and a set of basematerialswith knowndeformation

properties, expressed with our non-linear material model.



. . P S

We formulate the design process as an optimization problem where we need to

choose the distribution ofM possible base materials inside the fabricated object

such that it matches the input force-displacement samples.

We discretize the problem by dividing the desired object shape in a set of N

regular cells, eachmadeof a uniformbasematerial. e desired inhomogeneity and

possible anisotropy of the nal object are achieved by the appropriate distribution

of base materials. For each cell, one may choose a single material fromM possible

base materials. We call a certain choice of base materials and their distribution

a design. We denote each design as a vector m = (m ,m , . . .mN), where mi is

an integer value that indicates the type of base material in the ith cell out of the

{m̄j, ≤ j ≤ M} possible base materials.

In order to test each design, we assign its particular material choices to the cells

of the object, simulate the object with the quasi-static FEM approach from Sec-

tion . using the user-speci ed force pro les, and measure the error in surface

displacements. e surface displacements of all input examples are grouped in

one large vector x. Given the targeted displacements x̄, the displacement error of a

design is simply ∥x− x̄∥. Finding the optimal design with minimal displacement

error is an exponential problem, withMN to-be-tested designs.
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Figure 5.5.1: Branch-and-Bound with Clustering The root of the tree shows
the two materials A and B for the first out of three cells. Each level of the tree
spans the possible options for the subsequent cells. Sub-optimal branches of the
tree can be culled, and similar deformations can be clustered.



. . B - -B C

emajorproblemwhen solving suchadesignoptimization is thenon-convexity

of the design space and therefore the risk of ending up with a locally optimal so-

lution if only the local neighborhood is taken into account [Lund and Stegmann

]. To solve this discrete optimization problemweuse a decision tree such that

at each level of the tree we span the options for one cell in the design. e root of

the tree hasM children, where each child represents one of the material choices

for the rst cell, while the otherN − remain undecided. Figure . . shows the

decision tree for an object with three cells and two possible material choices.

Entire branches of the decision tree can be culled away using a branch-and-

bound algorithm [Land and Doig ]. During tree traversal, we store the mini-

mumerror dmin for the designs tested so far. When a newnode of the tree is visited,

i.e., a new cell is re ned, we use this minimum error to cull (if possible) the com-

plete subtree rooted at the node.

Given the breadth of the tree, branch culling still leads to an intractable number

of possible designs. However, o en several designs produce similar deformation

results. Hence, we cluster these nodes together to limit the breadth of the decision

tree at every level.

. . B E

We de ne {m}a = (m ,m , . . .ml, x . . . x) to denote the designs rooted at a

node a and located at level l. e rst l cells are already determined along this

branch, while the rest are still undecided (denoted by x). We estimate a bound



on the deformations produced by {m}a by considering the cases where the unde-

cided cells are uniform.

In otherwords, we estimate bounds by lling the undecided cells with each base

material m̄j, computing the resulting deformation for all input examples xj, and

bounding the result of theM cases as
[
xj
]
. We use axis-aligned bounding boxes in

high dimensions as bounds, i.e., maximum and minimum values for each dimen-

sion of the resulting displacement vectors. We cull the branch rooted at node a if

dist(x̄, [xi]) < dmin. When new designs are tested we update dmin appropriately.

Due to material non-linearities and the existence of non-monotonic functions

along the simulation process, our bound estimation is not conservative. While

efficient methods for bounding displacements in linear FEM se ings exist [Neu-

maier and Pownuk ], practical bounds for the non-linear se ing are still an

open research problem. However, the uniform blocks can be regarded as extreme

behaviors (from very so to very hard), and we can expect that combinations of

these materials will produce in-between deformations, in which case our bound

estimation will not cull any optimal designs.

. . C S

We traverse the decision tree in a breadth- rst manner, and hence a parent level

with n nodes produces another level with n ·M nodes. Evaluating bounds on this

new level requires the computation of n ·M designs. In order to limit the breadth

of the tree, and thereby the total number of designs that need testing, we cluster

nodes at every level before applying the split operation.



We cluster the n nodes at a level intoK clusters using K-means clustering, using

as distance dist(a, b) between two nodes the sum of squared example displace-

ment differences, evaluated for the pairwise uniform descendants. Formally, the

distance metric is:

dist(a, b) =
M∑
j

∥x(m a, . . .mla, m̄j, . . . , m̄j)− ( . )

x(m b, . . .mlb, m̄j, . . . , m̄j)∥ .

e cluster representative is the node that is closest to the centroid of the cluster.

Every time we split a level we need to test only KM designs. Since the height of

the tree is equal to the number of cells N, our clustering strategy limits the total

number of design evaluations to roughlyO(KM N). Note that the actual number

of tested designs is smaller due to bound-based culling. In our implementation, we

usually useK = clusters. is clustering approach comes at the cost of missing

the global optimal solution.

. A D C

To acquire surface deformations of objects with a wide range of material prop-

erties, we built an automatic measurement system that is able to acquire many dif-

ferent materials with varying geometry and surface properties. We use our system

to probe basematerial samples, composites of basematerials for model validation,

and complex real-world objects together with their reproductions.



Figure 5.6.1: Automated Deformation Capture Our automated system for
measuring material deformations consists of cameras (blue), a robot arm (green),
and a force sensor attached to a stick (red). A sample material block is shown
in pink and the inset shows a screen shot of our processing software.



Ourmeasurement setup (Figure . . ) consists of a four DOF robot arm (from

MicroProto Systems), a six-axis force-torque sensor (Nano from ATI), and a

vision subsystem to track surface displacements. e resolution of the robot arm

is . mm and its repeatability is . mm. e maximum range of the force

sensor is Nwith a resolution of / N. e vision subsystemconsists of seven

high-resolution Basler Pilot cameras running at a resolution of x pixels.

We set up the calibrated cameras [Svoboda et al. ] on a half-circle above the

robot arm to minimize occlusions and added diffuse lighting.

We paint regular, do ed grids with mm spacing on the objects’ surfaces, then

extract these markers from the captured frames using a scale and affine invariant

blob detector [Mikolajczyk and Schmid ] and track them. For each acquisi-

tion,weuse to deformation steps, dependingon the stiffnessof thematerial.

e maximal forces are in the range of to N. Finally, the trackedmarkers and

corresponding forces are registered to a surface mesh.

. R B M

. . I B M

To print D deformable objects and a set of base materials we use the OBJET

Connex multi-material printer. In each run, the printer can use up to two dif-

ferentmaterials, e.g., VeroWhite (rigid) andTangoBlack Plus (so ). As discussed

in an earlier chapter, the printer can also mix these two materials in prede ned

proportions, producing isotropic materials of intermediate stiffness. We mainly
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Figure 5.7.1: Force-Displacement Curves of Measured Materials When
plotting displacements (horizontal axis) against applied forces (vertical axis), we
unveil the high non-linearity inherent in most of our measured materials.

use Tango Black Plus (TBP) and a mixed material called digital material with shore

(DM ). In addition to these two isotropic base materials we measured eight

isotropicmaterials from theMcMaster-Carr online catalog, including rubbers and

foams. Figure . . shows a plot of surface displacement as a function of applied

force for a subset of measured materials.

. . T I B M

In order to model and fabricate materials with even larger deformation gamut

(in particular, materials that are much so er) we introduce internal



Figure 5.7.2: Transverse Isotropy

void spaces into the printed objects.

Unfortunately, the current printer only

allows printing void spaces that span

the entire object along the z-axis.

We use tubes of four different right).

ese objects are isotropic in the hori-

zontal plane, perpendicular to the tube

direction. e material can be regarded as transversely isotropic.

For such materials, the matrix E can be represented as:

E =



E E E

E E E

E E E

E

E
(E −E ) ,


. ( . )

with ve degrees-of-freedom, {E , E , E , E , E }. Our non-linear material

model can then be considered as a ve-valued function in a six-dimensional strain

domain, p(ε) : R → R .

All base materials were printed as cm (width) × cm (length) × . cm

(height) blocks. e deformations (side view) of some of these materials under

Newtons force are shown in Figure . . .



Figure 5.7.3: Base Materials Side view of several base materials during data
acquisition. The magnitude of the applied force is 15 Newton in all views.



. V R

. . V F

Ourmaterialmodel represents elastic behaviorof thebasematerials at themeso-

scopic level very well. In Figure . . we compare images from our measurement

system, the reconstructed deformed surface, and the corresponding simulation us-

ing FEM. We also show an error plot between the measured surface and the sim-

ulation. Note that the error is only evaluated at the surface marker positions and

then interpolated for visualization purposes. Furthermore, the error evaluation is

dependent on the accuracy of the measurement system which is in the range of

< mm. Very small pitching effects at the microscale of the material cannot be

tracked by our system and are therefore missing in the error visualization. Refer

to our video for more results. For isotropic base materials we use six and for the

transversal isotropic materials RBF centers, resulting in and parameters

for each base material, respectively. Fi ing the material model takes two hours on

average but has to be performed only once. We also report the average, standard

deviation, and maximum errors for the materials under varying applied loads in

Table . . .



0 mm

5 mm

Figure 5.8.1: Side-by-Side Comparison of Real and Simulated Materials
Deformation of an isotropic (left column) and transversely isotropic material
(right column), comparing acquisition (top row) with the simulation (middle
row) and the displacement error (bottom row).



Displacement error (mm)
Material Force (N) avg. std.dev max

N . . .
Foam N . . .
(very so ) N . . .

N . . .
Foam N . . .
(medium) N . . .

N . . .
Foam N . . .
(stiff) N . . .

N . . .
Printed TBP N . . .
(so ) N . . .

N . . .
Printed DM N . . .
(medium) N . . .

N . . .
Printed TBP N . . .
(stiff) N . . .

Table 5.8.1: Error Evaluation of the Model We fitted parameters for var-
ious isotropic (soft/medium/hard foams) and transversely isotropic materials
(printed, with cylindrical hole structures) and evaluated the surface displace-
ment error under small, medium, and high force loads by comparing to measured
deformations of material blocks (size isotropic 5x5x2.5cm, printed 5x4x2.5cm).



0 mm

5 mm

Figure 5.8.2: Validation of Composite Materials We assigned the material
properties obtained from two independent fits of base materials (DM501 and
DM502) to a composite, consisting of two layers. We then printed the composite
and compared the deformations of the real object (top row) to the simulation
(middle) under a load of and Newton. (bottom row): error visualization.



. . V S

Next, we show that we can accurately predict the behavior of composite ma-

terials made from arbitrary combinations of base materials. We ran a number of

simulations for different composites and also fabricated those using the Connex

printer. Next, we measured the behavior of these composite materials and

compared them to their corresponding simulations. We report this validation for

a few example deformations and materials in Figure . . and in our video. In the

composite example shown inFigure . . , we obtain average errors of . mmand

. mm under loads of N and N.

. . V G - D

Next, we validate our goal-based design process. We rst tested our process on

materials that we know we can reproduce. We picked a given combination of lay-

ers and their thicknesses. We then simulated this composite material and used its

deformations as the input to the search algorithm. We report the result of this

validation in Figure . . . erea er, we tested this strategy on different ran-

domly chosen material designs ( layers, each with different material choices

and force-displacement pairs). Although our search is not guaranteed to nd

the global optimum, it always found a very close solution (average RMS error of

. mm). e optimization time is usually below one hour. To carry this val-

idation even further, we have fabricated these composites and remeasured their

properties. We show these results in Figure . . .

We also tried to approximate one of the foams with a combination of materials



printed using the Connex . e obtained spatial combination and the error

evaluation are shown in Figure . . .

. . R O

We ran our complete replication process on several challenging real-world ob-

jects, including a pair of ip- ops, felt slippers and a heterogeneous leather stool.

We rst D scanned each object using a Cyberware scanner. ereupon, we ac-

quired their deformationbehaviorusingour automatedmesaurement system(Sec-

tion . ), followed by ing corresponding material parameters. For the leather

stool, we segmented the volume into two areas, and approximated each of them as

a homogeneous material. Next, we used the goal-based design process to nd the

best approximation of the material’s deformation properties using our base mate-

rials. For all results, we used between and force-displacement pairs. Finally,

we printed replicas of these objects using the multi-material printer. As we can be

seen in Figures . . and . . and the accompanying video, the replicas showvery

similar behavior to the original objects. To further validate this approach, we show

force-displacement curves in Figures . . and . . for corresponding points on

replicas and originals.
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Figure 5.8.3: Validation of Goal-Based Design Algorithm We randomly
generate a set of material designs. We then simulate these designs and use their
simulated deformations as input to the goal-based design search algorithm. We
then compare the obtained designs of the search algorithm with the known
ground truth. The upper bar plot shows the RMS error. We also fabricated one
of those randomly generated designs and its corresponding search output and
compared their force-displacement curves.
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Figure 5.8.4: Fabricated Example of Goal-Based Design We ran our goal-
based design algorithm on a foam block’s deformation behavior (upper left),
specified by example deformations. The desired deformation behavior is ap-
proximated by finer scale materials obtained through combinatorial optimization,
and then fabricated using a 3D printer (upper right). The lower curve shows
the force-displacement relationship of used base materials, foam, and fabricated
approximation.
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. . L F W

We believe that our system has many potential avenues for improvements and

future work. We predict that this process will be a template for many future sys-

tems that expand the range of simulated and fabricated material properties (such

as dynamic deformation properties or plasticity). More speci cally, we plan to

extend our model to dynamic and plastic deformation behavior and improve our

measurement system such that it can acquire a wider range of deformation prop-

erties (e.g., material stretching and dynamic deformation measurements) or can

guarantee and incorporate prior physical knowledge, such as volume preservation.

Additionally, we plan to investigate strategies for optimally choosing the number

of degrees of freedom (RBF centers) of our material model, striking a balance be-

tween accuracy and over ing. Furthermore, we would like to examine material

homogenization strategies [Kharevych et al. ] to improve the speed of the

forward (simulation) step for non-linear materials. is improvement along with

more advanced search strategies could, in turn, speed up the inverse step, making

the design and fabrication of extremely complex heterogeneousmaterials feasible.

. . S C

Currently, we only print layers of different materials. However, we believe our

algorithm could be extended in a straightforwardmanner to arbitrary spatial com-

binations (e.g., voxels) of base materials. e decision tree could be directly ap-



plied to D or D problems, by having a one-to-one mapping of layers in D to

voxels in D. Also, our pruning strategy (clustering and bounds) can be directly

translated to the D case. Our search algorithm linearly scales with the number of

layers or volume elements.

For current printers, the mechanical range of isotropic base materials without

any holes or tube structure is limited. e OBJET Connex printer can mix

two different materials, and the material properties are restricted to the range be-

tween the two loaded materials. To signi cantly expand this range, we deliber-

ately decided to create tube-structured materials. Due to current physical printer

limitations, these void tube structures can only be printed along the z-axis of the

printer, otherwise theywould get lledwith structurematerial, which is difficult to

remove. Printing blocks or objects with isotropic hole structures (similar to Swiss

cheese) is currently not possible. is comes at the cost of requiring a transversely

isotropic material model.

Looking into the future,wepredict that thenext generationof Dmulti-material

printers will be able to use many more base materials with a wider range of mate-

rial properties and more complex internal structures. As the cost of these printers

decreases and their capabilities increase, we believe that our goal of personalized

design, modeling, simulation, and fabrication will become reality.
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Figure 5.9.1: Replicating Flip-Flops and Slippers Flip-flops (top row) and
slippers (lower row). The left column shows the original images, the middle
column the replicated flip-flop and slipper with the spatial combination of base
materials obtained by our goal-based optimization approach. Our replication
matches the deformation behaviour of the original well, as shown in the force
displacement plots (right column) for a corresponding point on the original and
replica. The dotted curves characterize the base materials.



. S

Wepresented a complete process formeasuring, designing, and fabricatingma-

terials with desired deformation behavior. Ourmodel is able to represent and sim-

ulate the non-linear elastic deformation behavior of objects with complex internal

structures. To ensure high agreement between deformations of real materials and

their simulated behavior, we use a data-driven measurement process to estimate

non-linear stress-strain models for each material.

Furthermore, we show that a goal-based material design approach can approxi-

mate a desired global deformation behavior by ner scale materials through com-

binatorial optimization. By closing the loop between measurements, simulation,

goal-basedmaterial design, and Dprinting, we validate the complete pipeline and

show that close matches between simulated and fabricated objects are achievable.

Webelieve that our goal-baseddesign is a signi cant step towards Dhardcopying.

Our design approach also allows to fabricate any virtual deformable content as

long as we can sample displacement-force pairs. Hence, most physically-based de-

formable models commonly used in graphics and other elds can be fabricated

using our processing.

Next, we will fabricate animated characters from skinned meshes. In contrast

to our work presented in previous chapters, skinned meshes are non-physical de-

scriptors of deformable models. Non-physical content is particularly challenging

to fabricate because it is unclear how we best estimate models approximate the

given non-physical content.
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Figure 5.9.2: Replicating a Leather Stool The left column shows the original
object, the middle column a cross section of the replicated object and the spatial
combination of base materials. We segmented the stool into two regions, a stiff
region below the button (indicated in green) and the remaining softer region
(indicated in orange). We validated the deformation behaviour by comparing
the force displacement plots (right column) in the button region (orange) as
well as in the softer region (green).



I’m obsessively detail-oriented.

Donald Knuth

6
Fabricating Articulated Chara ers from

SkinnedMeshes

So far we automated the fabrication of deformable models that are physically

plausible. In this chapter, we propose a method for the fabrication of skinned

meshes, encoding deformationmodels that typically exhibit a highly non-physical



behavior. Hence, our technique can be understood as a fabricator of solely digi-

tal content. Given such a skinned mesh, we estimate a fabricatable single-material

model that approximates the D kinematics of the corresponding virtual articu-

lated character in a piecewise linear manner.

A er further motivating our work in Section . and outlining our method in

Section . , we discuss manufacturing considerations, then detail on our articu-

lated model estimation in Section . . We provide several demonstrations, manu-

factured as single assembled pieces using a D printer in Section . , before con-

cluding with a discussion and summary in Section . .

. I

Skinned characters are among themost widespreadmodels in computer graph-

ics and have received tremendous a ention in recent decades. Skilled artists have

years of experience in creating weighted associations between a hierarchical set of

bones (rig) andgroups of vertices on the character’smesh (skin). Content creation

systems, such as the one built into SPORE [Hecker et al. ], allow even naive

users to create sophisticated skinned characters.

Recently, online services such as Shapeways have become available,making per-

sonalized manufacturing on cu ing edge AM technologies accessible to a broad

audience. Affordable desktop printers will soon take over, enabling people to fab-

ricate custom-made D models at home. However, animation so ware packages

such as Maya or Blender lack a “ D print bu on” to facilitate converting a vir-



(a) (b) (c)

(d) (e) (f)

Figure 6.1.1: Fabricating Articulated Characters Given a skinned mesh (a),
we estimate (b) a fabricatable articulated character with (c) internal joints of
hinge and ball-and-socket type. (d-f) Final 3D printed characters (transparent
material) have durable joints with a frictional design for character posing.

tual articulated model into a fabricatable format. While tools and services that

map static properties such as geometry and appearance exist, the articulated be-

havior a key property of posable skinned models remains unmapped.

In this chapter, we present a technique that estimates an articulated character

model suitable formanufacturingwithAMtechnologies fromagiven skinnedmesh

(see Figure . . (a)). Our method is capable of generating posable models con-

sisting of a set of piecewise rigid pieces with non-overlapping, physicallymeaning-

ful ball-and-socket or hinge joint parts (Figure . . (b,c)).



Note that a direct mapping from virtual articulated to manufacturable, jointed

models does not exist. For starters, rig joints are close to physicallymeaningless as

they canmove out of the deformed geometry as illustrated in Figure . . le with

a rigged cylinder. Furthermore, because they are also not guaranteed to be em-

bedded in the character’s geometry in its rest pose, they are not a reliable estimate

for joint center placement. Also, while rig joints are zero-dimensional points, me-

chanical joints are volumetric entities that need to be large enough for structural

strength, and as such can potentially “collide” with each other if care is not taken

in the joint design process (see Figure . . right). Our approach addresses these

concerns.

While our method is capable of automatically generating articulated models

with ball-and-socket joints set to default ranges, these -DOF (degrees of free-

dom)defaultsmay restrict the posing space of fabricated characters either too li le

or toomuch. We therefore allow users to switch individual joints to hinge type ( -

t

Figure 6.1.2: Virtual Rig vs. Mechanical Joints: When animating a rigged
cylinder (left), we observe that the rig joints do not fall together with actual
rotation centers and move out of the deformed geometry. (right) If we maximize
the individual sizes of mechanical joints (and thus their strength), they could
collide (red).



DOF) and to specify range parameters differing from defaults for both of our joint

designs. For all our demonstrations, user-intervention is limited to a subset of the

joints.

A er rst analyzing the mesh and skinning weights, we estimate proxy joint lo-

cations, and assign custom parametric models for volumetric joint geometry that

are consistent with any user-speci ed joint limits. We then proceed to optimize

joint parameters (location, size, etc.) to increase joint strength while avoiding

overlapping joint geometry. By augmenting our joint models with tiny bumps to

increase joint friction, our output models can be posed and will retain their con-

guration (see Figure . . (d-f)). Finally, the estimated joints are carved out of

the character mesh using CSG operations. Additional overviews of our approach

are given in Figure . . and Section . .

For completeness and to assure high quality of our output models, we approxi-

mate the characters’ surface appearance also. Because the resolution of the geom-

etry of many skinned characters is kept low for fast rendering, we estimate micro-

geometric detail from normal maps if available. Carving out joints from character

meshes also works on textured content. We demonstrate the applicability of our

approach on a number of examples (see Figures . . , . . , . . , . . ).

We show that an analysis of skinning weights leads to a plausible segmentation

of the character’s geometry into rigid body parts. Furthermore, we present novel,

geometric approximate models of joint strength, that, together with our method

to avoid joint-joint collisions, ensure strong and functional joints in our output

models. Also, our collision resolution allows us to keep as much of the “fabricat-



able” input articulation in our posable output models as possible. To the best of

our knowledge, we are the rst to present a technique to automatically convert

skinned meshes into durable, articulated models.

. O

For articulated characters, we have to successfully map three components from

the virtual model to reality: two static properties, namely geometry and appear-

ance, and the model’s articulation that allows it to be posed. See Figure . . for an

overview of our fabrication pipeline. Next, we identify the properties we use.

. . I : S C

e input to our estimation process is a skinned character (see Figure . . le ).

e input geometry is speci ed as semi-organized set of oriented face tuples f ∈ F

whose components fj index into a set of vertices v ∈ V. Optionally, appearance is

speci ed with color information provided as diffuse texture, andmicro-geometric

detail encoded in a normal map. As indicated in Figure . . (d), our input mesh

could potentially consist of a set of individual, overlapping mesh components. By

repairing (removing duplicate vertices, resolving violations of manifoldness, etc.)

and unifying this set of components, we compute amanifold, closed surfacemesh

(VF , FF). Because this mesh ful lls the requirements of manufacturing, we call

it a fabrication meshF . Without loss of generality, we herea er assume faces and

vertices to refer to entities of repaired meshes, and the faces to be triangles.



e articulation behavior is speci ed by a LBS model wherein each vertex i in

V is weighted to link l ∈ L by a (nonnegative) skinning weight wil, such that the

deformed vertex position is given by

v′i =
∑
l

wil Tl vi, ( . )

where Tl are some unknown time-varying link transforms. Moreover, we require

the set of link correspondences L to have tree-structured connectivity de ned by

a function P that maps every link l ∈ L to its unique parent P(l). We also add an

index ω /∈ L and denote the link r whose parent is P(r) = ω the root node. Note

that such a LBS description is the lowest common denominator of practically all

articulated characters found in games.

. . P P

Given the skinned input mesh, our method proceeds to estimate an articulated

model as follows (refer to Figure . . ). In the joint estimation branch (lower part

in Figure . . ) of our pipeline (see Section . . ), we rst analyze the skinning

weights and their link correspondences to segment the original geometry into an

approximate set of body parts (f). From this segmentation, we then derive a l-

tered set of oriented joint locations (g) that consist of orientation vectors, and the

joint’s rotation centers that we place on an approximatemedial axis representation

of the fabrication mesh (h).

e fabrication mesh F (e) together with the articulation data (g) is then fed

into our joint optimization procedure (i) where posable joints with maximal cross-



sectional areas are being generated from corresponding oriented joint locations

together with any user-speci ed range constraints. Pairwise collisions between

generated joints are resolved while keeping the joints’ rotation centers xed (see

Section . . ). Overall, our mapping tries to keep as much of the input articula-

tion as possible, while also keeping the model structurally strong. e nal set of

non-colliding, mechanical joints are then carved out of F using CSG (j) and we

get a ready-to-print, structurally strong, articulated model (k) consisting of a set

of piecewise-rigid parts that are jointed together with hinges, or balls and sockets.

e models are statically posable using a joint friction design discussed in Sec-

tion . . .

Optionally, the joint carving canbeperformedona colored, high resolution fab-

rication mesh whose geometric detail is computed by inverting normal mapping

using the weighted least squares version of Nehab et al. [ ].



Figure 6.2.1: Pipeline Overview: Given a skinned input mesh with (a) geom-
etry, (b) skinning weights whose link correspondences are organized in a single
rooted tree structure, and optional (c) diffuse texture and normal map, our ap-
proach estimates a (k) fabricatable 3D model as follows: (d) mesh components
are identified, and (e) fused into a single, closed surface we call the fabrication
mesh F . Joints are computed by (f) estimating a rigid link segmentation from
skinning weights, and (g) estimating proxy joint locations and filtering prob-
lematic joints. To optimize joint center placement, we use (h) an approximate
medial axis representation of F . (i) The parameters of volumetric joints with
optional user-specified range constraints are optimized for strength and to avoid
inter-joint collisions. (j) The joints are carved out of F using CSG operations.
The final 3D printout (l) is a posable reproduction of the virtual articulated
character.



. M C

Ourposableoutputmodels are tailored tobe fabricatedonAMdevices as single,

assembled pieces. To manufacture overhanging or assembled geometry like our

Build Tray

d

Figure 6.3.1

mechanical joints, layered approaches use some kind

of supporting structure as illustrated on the le in blue

and discussed earlier in Section . . A er printing,

this supportmaterial can either be blown (for powders),

broken, orwashedoff. To ensure that the individual, as-

sembled parts (in grey) aremovable, and not fused dur-

ing printing, we ensure a device-dependentminimal distance d (in yellow) between

these pieces. Hence, we treat d as hard constraint when estimating our geometric

joint models in Section . . .

An important factor for manufacturability on AM devices is the models’ struc-

tural strength because it puts a limit on the feasibility of desired output dimensions

and largely affects the models’ durability. If substructures are too ne, they either

break off during fabrication, or when interacting with the nal printouts.

Whendesigning simple structures (e.g., trusses), civil engineers repeatedly iden-

tify their weakest link, and adjust its dimensions. Inspired by this basic analysis, we

seek to increase the articulated models’ overall strength by identifying and max-

imizing each of their mechanical joints’ critical cross-sectional areas. We reject

joints if their minimal cross-section falls below a technology imposed global, criti-

cal area threshold Amin. While this heuristic does not ensure structural optimality,



(a) (b) (c) (d) (e)

Figure 6.4.1: Estimating Articulation Behavior: (a) Piecewise rigid segmen-
tation using skinning weights. Faces whose vertices belong to different segments,
are shown in black. (b) Transitions oriented from the root towards the leafs in
the link connectivity P, (c) degenerate, and (d) filtered transitions. (e) Final set
of joint locations on the scale axis transform of F .

it allows us to formulate our hinges and ball-and-sockets using parametric, geo-

metric models of joint strength (see Section . . ). Note that, because our virtual

input characters might be nonphysical, e.g., cartoon characters, their correspond-

ing fabrication meshes could themselves have critical sections below Amin as, e.g.,

in long and slim necks. While we do not improve the structural strength of our

input geometry, our scale-aware simpli cation (Chapter ) or the technique by

Stava et al. [ ] could be used to further process our fabrication meshes.

. A M E

We now describe the estimation of oriented joint locations from the charac-

ter’s skin, and cast our hinges and ball-and-sockets as geometric models of joint

strength that are then optimized while avoiding joint-joint collisions.



. . E R P J L

To estimate oriented locationswheremechanical joints are best placed (see Fig-

ure . . ), we exploit the link correspondence P encoded in the skinning weights

wil and ignore the character’s rig. We observe that a segmentation of the charac-

ter’s input geometry (V, F) into piecewise rigid parts is naturally given by assign-

ing each vertex i to the link l with maximal weight maxl∈L wil, as visualized in Fig-

ure . . (a) with a unique hue per link.

Most LBS descriptors lack information about skeletal joint motion (as implic-

itly encoded in the link transform parts Tl in Equation . ), and o en include

rig joint locations for the characters’ rest pose only. Unlike skinning weights, rig

joint locations are not a reliable source for mechanical joint placement because

they are nonphysical, zero-dimensional points. Firstly, they are not guaranteed

Figure 6.4.2

to be embedded in the character’s geometry as demon-

strated on the right for a spider’s mandible. Secondly,

rig joints typically do not fall together with actual ro-

tation centers during animations as the cylinder exam-

ple in Figure . . le illustrates. Hence, it is be er to

place joints at transitions of maximal link in uence as

shown in black in Figure . . (a). Such transitions are by default found in regions

where the model bends most during animations and where joints are natural.

A er segmentation, we approximate each transitionwith a plane (comparewith

Figure . . ) as illustrated in Figure . . (b) with gray disks. We rst identify all

unique edges in (V, F) whose end vertices j and k have maximal link in uences



lj = argmaxl∈L wjl and lk = argmaxl∈L wkl with lj ̸= lk. Note that links lj and

lk do not have to be direct neighbors in the tree-structured connectivity P even

though they usually are. We then partition this set of transition edges with respect

to matching ordered link-pairs (m, o)

∪
(m,o)

{{j, k} |A({j, k})} , ( . )

with A :=
((
lj = m

)
∧ (lk = o)

)
∨
(
(lk = m) ∧

(
lj = o

))
and where link m is

closer (or equal) to the root than o. Note that in rare cases where transitions (m, o)

span over branches in P and where both links m and o have the same distance to

the root, the link order is ambiguous. Transition (l , l ) in Figure . . le provides

an instance of such a case as both links l and l have r as a parent. To resolve this

ambiguity, we randomly choose the link order (m, o). Alternatively, the user could

specify it. For each edge {j, k} in each transition (m, o) (see Figure . . right), we

then compute a transition point pjk

wj,lj

wj,lj + wk,lk
vj +

wk,lk

wk,lk + wj,lj
vk, ( . )

with normalized maximal weights wj,lj and wk,lk , and, nally, linearly approximate

each transition by runningPrincipalComponentAnalysis (PCA)on the set of cor-

responding transition points, resulting in a mean point p(m,o) and principle com-

ponents eλ , eλ , and eλ , sorted by their variances λ ≤ λ ≤ λ . We call the

mean point transition center and the vector n(m,o) = seλ , the transition’s orienta-

tion. Next, we consistently orient planes (choosing the sign s = ± ) w.r.t. the
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Figure 6.4.3: Estimating Transitions: (left) Skinned cylinder with root r and
three links (l in red, l in green, l in blue) with their corresponding skinning
weights (bottom). The link connectivity P is defined by P(l ) = r, P(l ) = r,
P(l ) = l , and P(r) = ω. The two transitions (l , l ) and (l , l ) together with
the final oriented transition planes pointing from the root towards the leaves
in P (top). (right) A transition edge (in gray) with corresponding transition
point (top) for transition (l , l ). (right) From the transition points, and their
edges’ end vertices (in blue and green), we compute the transition’s center and
orientation (in yellow, bottom).

hierarchical structure in P (from the root towards the leaves). While orientations

do not affect theDOFs of individualmechanical joints in the posable outputmod-

els, it allows us to pack the volumetric joints more closely, hence to keep more of

the overall input articulation. We set s to if more of the edge end vertices vj (cor-

responding to the link m closer to the root, assuming lj = m) are on the positive

side of the transition plane ((vj − p(m,o)) · n(m,o) > ) than end vertices vk on the

plane’s negative side ((vk − p(m,o)) · n(m,o) < ).

Taking a closer look at the estimated transitions (see Figure . . ), we observe

that their corresponding transition points do not always span a closed loop on the



Figure 6.4.4: Filtering Transitions: For valid joints, transition points (gray)
span a closed loop on the input geometry (green disks). However, for a subset of
transitions (red disks), they only cover a partial loop on the geometry, indicating
that the two corresponding body parts are semi-rigidly connected. Because it is
unclear how a mechanical joint should be placed for such degenerate transitions,
we filter them out.

input geometry, as illustrated in Figure . . and Figure . . (c) with red disks.

Because it is unclear how a mechanical joint should be placed on a transition that,

e.g., only covers half of the geometry, we lter out such degenerate transitions. We

nd that a good measure for degeneracy is given by the ratio of the largest- and

mid-eigenvalue of the x PCA covariance matrix at (m, o) because it clearly dis-

criminates between caseswhere transition points are close to circularly distributed

(greendisks in Figure . . ) and the degenerate cases. If the largest variance λ is at

least a factor f larger than the mid-variance λ , we reject the transition. is leaves

us with the set of transitions shown in Figure . . (d).

Because it is unclear from the articulation data where to best place joint centers

on the transitions, we set the centers to the closest intersection c(m,o) of transition



(p(m,o), n(m,o)) with an approximate medial axis representation of the fabrication

meshF . Because the medial axis transform [Blum ] is unstable and leads to

many unintuitive branches, we use the recent scale axis transform [Miklos et al.

] instead. Placing joint centers on the scale axis is reasonable because it al-

lows to maximize the mechanical joints’ sizes, hence, to leverage their structural

strength. Furthermore, this choice guarantees that the joints’ center is always in

the interior of F . e nal set of oriented joint locations (c, n) is shown in Fig-

ure . . (e).

. . O P J S

Figure 6.4.5

Given an oriented joint location (c, n), as illustrated on

the le with a cylinder with a single mid-transition, we now

estimate mechanical joints. To this end, we cast our hinge

and ball-and-socket designs as parametric, geometric mod-

els of joint strength (see Figure . . le ). To minimize in-

terference of the joints with the character’s overall appear-

ance, we limit their parameters so that the sockets for both

designs are guaranteed to be embedded in the maximum inscribed sphere of ra-

dius rmax in the fabrication mesh F , at the joint’s rotation center c (see do ed,

black circles in Figure . . ). Furthermore, we keep aminimal distance d between

the joint parts to prevent their fusion during manufacturing.

When designing structures, civil engineers repeatedly analyze the stress distri-

bution within the structures’ bodies under a set of typical loading scenarios (see,



e.g., [Beer et al. ]). A simple view is that the average stress across a given cross-

section A is given by the force per area σ = F/A, where F is the residual load. If a

local stress level is too high, a structure could break, hence, they adjust the design’s

dimensions in that particular region, thereby increasing the corresponding critical

area. In the same spirit, we identify a total of three critical cross-sectional areas

for each of our designs (see Figure . . right) and maximize each joint’s minimal

area. While these critical areas are parameterizedwith only two parameters for our

ball-and-sockets (the socket’s radius r and a height parameter h, see Figure . .

top row, le ), we need three parameters for our hinges: e outer and inner radii

R and r, and the width b, limiting the hinge’s toroid (see Figure . . bo om row,

le ). is leads to the following two constrainedmax-min optimization problems.
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Figure 6.4.7

Ball-And-Socket Joint: For our ball-

and-socket design, we get

max
{r,h}

min
i∈I

Ai(r, h), ( . )

with I = { , , } and constraints rmax >

r > d and r− d > h >
√
r − (r− d)

limiting the joint’s feasibility as shownon

the right in red and green, respectively. Note how the curves corresponding to

equal areas (in blue) meet at a single point A. For almost all pairs (d, rmax), our

max-min problem leads to three equal critical areas. If the joint is infeasible or its

minimal critical area is below the global threshold Amin, we reject it.



Hinge Joint: Similarly, we get

max
{R,r,b}

min
i∈I

Ai(R, r, b), ( . )

with I = { , , } and constrained by r > d, R > d+ r, rmax >
( b) + R , and

b > d for our hinge design.

Note, however, that the ranges for our current designs are limited in directions

perpendicular to the joint’s orientation (comparewith Figure . . le ). While ro-

tational joint motion is too restrictive for our current hinges, joint motion around

axis n is unrestricted for our ball-and-sockets. ese spherical joints are there-

fore well-suited for common joints found in hips and spines. For elbow, knee, or

shoulder joints, however, they are un t. Because it is unclear how to estimate joint

✓

Figure 6.4.8

types, ranges, and the hinges’ rotation axes from the charac-

ter’s skin, we give the user the option to specify them. Be-

cause general ranges are not rotation-invariant w.r.t. angle-

axis (θ, n), we disambiguate by introducing a right-handed,

orthogonal joint ame [a, n, f] whose forward axis f (red ar-

row on the le ) is aligned with the direction where θ is zero.

Note how axis a (in blue) falls together with our hinge’s ro-

tation axis.
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Figure 6.4.6: Critical Cross-Sectional Areas: (top) Our ball-and-socket de-
sign with its critical areas A (red, circle of radius rmax with centric hole of radius
r), A (green, open cylinder of radius r− d and height h−

√
r − (r− d) ), and

A (blue, circle of radius
√

(r− d) − h ). (bottom) For our hinge design, we
get A (red, twice the area of circle with radius r − d, assuming this section to
break in double-shear [Beer et al. 2011]), A (green, twice the rectangular area
with sides b − d and R − d − r), and A (blue, circle with radius rmax reduced
by twice the rectangular area with sides b and R − (r − d)). Area A (brown)
is non-critical because for all feasible hinges, there is a h so that A ≥ A . In
practice, we choose h so that areas A and A are equal.



User-Intervention: is frame is uniquely de ned by our estimated joint lo-

cations, up to the axis’ a rotation angle w.r.t. the joint’s orientation that we let the

user choose. Ranges can then be speci ed by direction-dependent opening angles

φ(θ) for our ball-and-sockets, and forward (γf) and backward (γb) swing angles for

our hinges (see Figure . . le ).
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Figure 6.4.9: Joint Ranges: (top) Range constraints for our ball-and-sockets
may reduce open cylinder area A (green) of radius r′ and height s. The “un-
rolled” cylinder area (see graph in the lower right) is reduced by the area under
f(θ) that overlaps with range [ , s]. Value f at a θ (brown point) is given by the
intersection of line through joint center c and slope tan(α + φ(θ))− , with the
infinite cylinder of radius r′ (see upper right, note that cos α = h

r′ ). (bottom)
Forward and backward constraints for our hinges may reduce critical area A
by A′ each, as illustrated with a swing angle γf that leads to a combined angle
α + γf larger than ◦ (with cos α = h

R−d).



Range Constraints: ese range constraints may reduce critical areas of our

joint designs as illustrated in Figure . . right. For our hinges (bo om row), a

swing angle that is – when combined with α – larger than ◦, reduces section A

by an amount A′. is reduction can be expressed in closed form, parametrized

by the hinge’s set of parameters. To incorporate the range constraint φ(θ) into our

ball-and-socket design (top row in Figure . . ), we reduce the cylindric area A

with circumference πr′ (r′ = r− d) by

∫ π

min (s,max ( , f(θ))) θr′dθ, ( . )

with cylinder height s =
√
r − r′ and f(θ) = h− r′

tan(α+φ(θ)) . A similar derivation

leads to a reduction of areaA in caseswhere the sumof themaximal opening angle

and α is larger than ◦.

Note that we recompute these critical areas with their reductions in each itera-

tion of our joint optimizations, and that our max-min formulations balance these

areas up to equality as long as the constraints allow it. Infeasible designs, such as a

socket that cannot hold its ball, are caught by our feasibility constraints. Without

user-intervention, we can automatically generate articulated models with spheri-

cal default jointswith constant, global constraint φ(θ) = β. Our geometric formu-

lations, however, are only approximate models for joint strength and optimality

w.r.t. structural strength is not guaranteed. Nevertheless, we avoid weak joints by

maximizing their minimal critical cross-section and rejecting them if this section

has a value below the global threshold Amin. Also, while our two basic joint types

lead to output models with sufficient DOFs, our recipe of identifying critical sec-



tions and maximizing their minima is general and applies to other joint designs

also.

. . F P J F

Fromthe joints’ blueprints (seeFigures . . and . . le ) togetherwithdevice-

dependent manufacturing, user-provided range, and estimated joint parameters,

we then generate an implicit CSG representation of the volume (in green in Fig-

ure . . ) that we have to remove from fabrication mesh F to introduce a joint

at its estimated location. We call this volume joint hull. A er polygonizing these

hulls, we carve them out ofF with mesh-boolean difference operations (see Fig-

ure . . right), resulting in fabricatable output models with desired kinemat-

ics. ese models, however, are unlikely to retain a pose once placed into it, and

are more like a printed “rag doll.” To overcome this limitation, we fabricate small

bump spheres of radius rb onto the positive joint parts similar to [Grey ; Wai

]. To prevent fusion of movable parts during manufacturing, we extent their

ideas by subtracting spheres with same centers but extended radius rb + d from

the negative joint parts also, as illustrated in the top, right corner in Figure . . .

is additional frictionmechanism results in posable joints with continuous posi-

tion control. While these iction bumps could potentially stick out ofF a er joint

carving, we did not observe such cases when estimating our demonstration mod-

els. To guarantee embeddedness, we could reduce radii rmax by rb or, alternatively,

invert the bumps and add them to the negative joint parts instead.
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Figure 6.4.10: Frictional Joint Designs based on adding small calibrated
bumps. (top) Ball-and-socket joint hull with friction bumps on the ball part and
(bottom) hinge joint hull with bumps on the toroidal part. Printed articulated
models can then retain their pose.
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As of now, we can successfully turn simple skins into posable output models,

consisting of a set of jointed, rigid pieces that we can print assembled. For sophis-

ticated input skins, however, estimated joint locations are o en in close proximity

to one another, and, as aforementioned and illustrated in Figure . . right, corre-

sponding joint hulls are likely to collide when we maximize the individual joints’

sizes. Such overlaps may lead to broken joints, as a closer look at an example of

two colliding hulls unveils: if, e.g., a hull volume of one joint contains the part of

another spherical joint’s socket that prevents its corresponding ball from popping

out, we get two disassembled pieces in our output. Hence, we resolve such joint-

joint collisions before carving their hulls out of the fabrication meshF .



In a rst naive approach, we could simply remove individual joints, until there

are no further hull collisions le . However, while this strategy guarantees func-

tioning joints in our output models, it is not optimal, because we would reject far

more of the “fabricatable” input articulation than necessary. A second approach

would act directly on what causes the collisions in the rst place: the proximity

between estimated joint locations. Bymoving these locations, we could “ t” more

joints inF . However, becausewe set the joints’ rotation centers to these locations,

this second strategywould signi cantly change the semantics encoded in our input

articulation (if locations were moved away from their corresponding transitions).

In the following, we describe our collision resolution procedure that tries to keep

as much of the input articulation as possible while avoiding weak joints and keep-

ing their rotation centers xed. See Figure . . and the accompanying video for

illustrations.

To initialize our resolution process, we proceed as previously described (Sec-

tions . . , . . , and . . ). We compute the radius rmax of the maximum in-

scribed sphere, then optimize a parametric joint model consistent with any user-

speci ed ranges at each estimated location, resulting in a set of joint hulls. Next, we

compute all pairwise collisions between these hulls that we in ate by half the dis-

tance d, to guarantee a minimal offset between individual joints also. (Note that

when we speak of collisions in the following we refer to collisions between such

in ated joint hulls). To coordinate further processing, we then abstract joint hulls

with nodes and pairwise collisions with undirected edges of what we call a collision

graph. erea er, we extract all connected components of this graph with orders



larger than one, and push this collision groups onto a collision stack. Refer to Fig-

ure . . (a), where we use the notation Ct
i to uniquely identify each group i at

time step t of our resolution.

As long as there are groups on this stack, we pop the topmost and repeatedly

reduce the radius rmax for the joint with largest minimal cross section, as it is cur-

rently the strongest within this group. We then reestimate its optimal parame-

ters, and check for collisions with its updated joint hull. We stop when either a

collision (or several) got resolved, a joint gets infeasible (e.g., a joint’s minimal

Figure 6.4.12

critical area gets smaller than Amin), or

a joint hull is colliding with a hull out-

side of its collision group. While such

outside collisions are rare in practice, it

is crucial to check for them, as the ex-

ample of three spherical joint hulls in

the inset gure on the le illustrates. When we reduce the size of the “strongest”

of the upper pair of colliding joints, we introduce a second collision with a “node”

outside of that group.

If collisions got resolved, we are either done (no more collisions within this

group) and continue (see Figure . . (c)), or split the collision group into sub-

groups, if necessary, and push those onto the stack. See Figure . . (b) for an

illustration, where we use Ct
x,j to denote the subgroup j with previous group corre-

spondence history x. If no split is required (single group), we simply push back Ct
x,

without the resolved “edges” and “nodes”. However, if a joint becomes infeasible or



amember collides with a joint outside of its collision group, this group is unresolv-

able without excluding a joint. (Note that while we could add outside collisions

to groups or merge groups of the involved members, such “additions” or “merges”

may lead to cyclic behavior in our resolution process. Hence, we exclude a joint

instead thereby guaranteeing convergence.) We observe that a good candidate for

exclusion is given by themember of the current group that was “weakest” a er ini-

tialization (smallestAmin). While this heuristic leads to pleasing output models in

practice, this to-be-excluded joint could also be chosen by the user. A er an exclu-

sion, we pop all descendants of the original collision group (all groups that have

rst index k in their correspondence history, if k is the original group’s index a er

initialization), and push the original collision group (k) with reset radii rmax and

without the excluded joint back onto the stack. Such a reset is necessary because

an exclusion of a joint might make previous reductions of joint sizes unnecessary.

Note that our collision resolution process performs evenly well on any other

parametric joint designs (other than our hinges and ball-and-sockets from Sec-

tion . . ) as our collision handling is evaluated on arbitrary hulls, with the only

requirement that the joints have to have a single rotation center. Because joints

can only get smaller and we exclude a joint if a member gets infeasible or collides

with an outside joint, our collision process converges.
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Figure 6.4.11: Resolving Collisions: Colliding joints are shown in red, non-
colliding joints in green. For top (a-d) and bottom row (e-h), we have joint hulls
on top, corresponding collision graph, and stack in the middle and at the bottom.
(a) Initial collision groups for a full character, (b) group split after a resolution,
(c) completion of a collision group, and (d) final set of non-colliding joint hulls
that we then carve out of F . (e) Initial collision group for a character’s tail,
(f) a joint gets infeasible (Amin too small), (g) exclusion of a joint, (h) updated
joint hulls and collisions after a group reset.



. R

We have created and printed a total of six models based on ve skinned charac-

ters generatedby theSPOREContentCreator (“Grumpy” inFigure . . , “Chicks”

and “Dinofrog” in Figure . . , “Cristal Frog“ and “Lippy” in Figure . . ), and a

realistic humanhandmodel thatwe rigged and skinned inMaya (see Figure . . ).

Our veSPOREexamples includediffuse andnormalmaps, and jointswere carved

out of their colored fabrication meshes, whose geometric detail we computed by

inverting normal mapping [Nehab et al. ]. is inversion leads to signi cant

Figure 6.5.1

quality improvements in F ,

hence, also in our printouts,

as illustrated on the right

with a comparison of input

and reconstructed geometry

for our “Grumpy” character.

All of our articulated output

models were printed with an

Objet Connex printer. We used three of Objet’s hard, plastic-like materials

called “VeroBlack” (“Lippy” and “Cristalfrog”), “VeroClear” (“Grumpy,” “Chicks,”

and “Dinofrog”), and “ABS-like digital material” (hand model). While “Vero-

Clear” is transparent and the embedded joints, therefore, visible, the ABS-likema-

terial is the structurally strongest (e.g., LEGO ismadeout ofABS).Objet’s support

material is gel-like and can be removed with a water-jet.



To identify the minimal offset d to ensure jointed parts to be movable, and the

critical area threshold Amin to avoid weak mechanical joints, we estimated hinges

and ball-and-sockets for a single-transition cylinder (see Figure . . right) with

varying radius and for different offsets d, and then printed them with the three

printer materials: beyond offsets of . mm, parts started fusing and the support

material could not bewater-je ed or “broken out” any longer, and joints withmin-

imal critical areas smaller than mm for “VeroClear” and “VeroBlack”, and

mm for the ABS-like material, started to get bri le. With a similar empirical ex-

periment, we identi ed a friction bump radius rb of . mm. Note that this bump

radius is larger than the minimal distance d.

Prior to our articulation estimation, we scaled our input to target sizes (in di-

rection normal to the ground plane shown in gray in Figures . . , . . , . . ,

. . ) of our output models: mm for “Grumpy” and our hand model, mm

for “Chicks,” and mm for “Lippy,” “Dinofrog,” and “Cristalfrog”. To lter de-

generate transitions, we used factors f ∈ [ . , . ]. Generally, very li le user-

intervention is needed. E.g., for “Grumpy,” the user-intervention was restricted

to switching joints to hinge type and specifying three angles each (forward

and backward swing angles, and rotation angle around the joint’s estimated ori-

entation axis). In addition, we speci ed spherical range constraints for three neck

joints (with again, three user-speci ed angles each, because we use elliptical open-

ing angles φ(θ) = φa sin θ + φb cos θ). All other joints are defaults with global,

rotation-invariant range β of a few degrees. With our unoptimized implementa-

tion that uses an implicit, extended, regular-grid-based marching cubes approach,



it takes approximately . hours to process “Grumpy,” which is still a fraction of the

needed manufacturing time of hours. e time required for processing highly

depends on the number of collisions that have to be resolved prior to joint carving.

While our SPORE examples had many collisions to resolve, our hand model only

had a single collision between two neighboring knuckle joints (overall processing

time under min).

Figure 6.5.2: “Chicks” and “Dinofrog”



Figure 6.5.3: “Cristal Frog” and “Lippy”



Figure 6.5.4: “Hand”



. C D

We have devised a method to generate fabricatable characters from skinned in-

put meshes, e.g., suitable for personalized posable toys. While we are able to gen-

erate characters with spherical default joints fully automatically, we allow users to

specify joint types and ranges for joints where defaults are not as natural. Note

that input skins have transitions where joints are expected, because transitions be-

tween joint in uences are naturally at places where the model’s geometry bends

the most during animations. However, while we could always have the user re-

move unwanted transitions and corresponding joints if there are too many, our

system is not able to estimate joints where there is no input data. In the future, we

expect that our method and its successors will enable a fully “automatic D print

bu on” for characters.

ere are several remaining challenges. Current D printers introduce many

limitations onwhatwe canprint. Althoughour system fully supports colored char-

acters, we were not able to print posable articulated output models in full color.

Furthermore, while we avoid weak joints by optimizing parameters of our geo-

metric approximate models of joint strength, our hinge and ball-and-socket de-

signs are not modeling structural strength to a level of accuracy where our system

could be fed with a set of measuredmaterial parameters to estimate structurally op-

timal joints. As aforementioned, our input skins could also include ne geometric

detail with cross sections smaller than Amin, or even parts that are completely dis-

connected from themodel’smain body, or overlap in the character’s rest pose. is



would require to either signi cantly changing the input geometry (locally in ate

geometry, adding arti cial connectors, etc.) or rejecting those parts completely.

Also, our articulated outputs can be understood as rst order, piecewise linear

approximate reproductions of the virtual input articulation. Complete piecewise

continuous reproductions that include a deformable skin, are le as future work.



In theory there is no difference between theory and practice.

In practice there is.

Yogi Berra

7
Scale-Aware Fabrication

Dgeometry is ubiquitous and a fundamental part of practically all CGcontent.

In this chapter, we propose amethod for the automated, scale-aware fabrication of

an object’s static geometry. Dmodeling tools are unaware of manufacturing con-

straints and their output models are tailored for rendering rather than fabrication.

If they contain features too thin and ne, they break during or a er D printing.



Wewill discuss amethod to abstract such geometric features to ensure thatmodels

print correctly, then engrave detail to make sure these features are still perceived

in nal printouts.

A er a brief introduction in the next Section, we examine desired properties of

abstraction for manufacturing in Section . . erea er, we introduce our cali-

bration part to identify the engraving depth for a targeted AM device, then detail

on our abstraction, and engraving in Sections . and . , respectively. We provide

demonstrations of our geometry processing in Section . . In Section . , we sum-

marize and discuss howwe plan to extent our processing to support feature-aware,

local thickening also.

. I

Recently, affordable desktopprinters such asMakerBot’sReplicator or DSys-

tems’ Cubify became available allowing us to print custom parts at home at the

press of a bu on. However, the vast majority of D modeling tools are unaware

of manufacturing constraints and their output models are tailored for rendering

rather than fabrication. While detailed D models such as the Eiffel tower in Fig-

ure . . (le ) render correctly at any screen resolution and far camera views, ne

features are skipped and fuse during or break a er printing. Similar to the way D

printers print a document line a er line, a D printer builds a given model layer-

by-layer. Since models are built in such an additive manner, incorrectly printed or

skipped features will effect all the features above it (error accumulation).

We present a geometry processing capable of estimating a model tailored for



Figure 7.1.1: Rendering vs. Manufacturing 3D models capturing every hole
and protrusion of real-world objects (left) render correctly at any far camera
view. We draw inspiration from souvenir manufacturing where detail is manually
abstracted and engraved to ensure that miniature models are fabricatable (right).

small-scale manufacturing from a given polygonal mesh. We rst represent our

input model and its embedding with unions of interior and exterior medial balls.

Next, we detect non-fabricatable intrusions by analyzing radii along edges con-

necting the exterior medial balls, then mark a subset as belonging to the interior.

We then extract a watertight, intersection free mesh by identifying the surface be-

tween the editedunionsof exterior and interior balls. Toengrave features, weoffset

our abstracted model by shrinking interior and growing exterior balls by a device-

dependent, calibrated offset parameter. erea er, we unify the unions of balls

representations of our offset, abstracted model with those representing the origi-

nal input, resulting in a fabricatable model with preserved detail.

While Stava and colleagues [ ]were the rst to present a technique capable

of improving the structural strength of weak links in D-printablemodels and Luo



et al.’s [ ]method allowsus todivide suchmodels into smaller parts if too large

(scalability), ourmethod is closer related tomodel simpli cation in that it abstracts

detail [Mehra et al. ]. However, unlike typical mesh simpli cation [Garland

andHeckbert ] and LOD representations [Hoppe ], we are focusing on

manufacturing rather than rendering. Stava et al. [Stava et al. ] propose local

thickening, besides strut insertion, and hollowing. ickening of features too thin

and ne, however, may lead to blobby output models when targeting small scales

on a low resolution printer. In contrast, we draw inspiration from souvenir manu-

facturingwhereminiaturemodels with engraved detail aremanually designed (see

Figure . . right).

Manufacturing adjustments to polygonal meshes are challenging because the

output models need to be manifold, closed, and self-intersection free. Otherwise,

voxel classi cation is ambiguous and AM devices cannot identify the part of the

volume belonging to the interior (“place material”). To this end, we base our geo-

metric processing on the rigorous power crust algorithm byAmenta et al. [ a;

b]. We extent their framework with a minimal adaptive Poisson-disk sam-

pling of the input geometry, then analyze the resulting graphs connecting medial

ball centers in our abstraction. Our framework allows us to deal with any topolog-

ical changes during abstraction, while preserving sharp corners and edges in non-

critical regions, and guaranteeing that the output is water-tight and intersection

free.



. O

e major objective behind mesh simpli cation and LOD is reduction of the

overall number of triangles while resembling the original geometry as good as pos-

sible when viewed from a far camera. is processing is typically unaware of the

enclosed volume, hence, may introduce non-manifoldness [Rossignac and Borrel

] and self-intersections [Garland and Heckbert ].

In contrast, themain goal in scale-awaremanufacturing is to keep asmuchdetail

as possible while keeping the model fabricatable. We seek for an abstraction oper-

ator capable of “naturally” lling small and deep intrusions. To visually preserve

the non-fabricatable detail, we can engrave such indentations. Unlike for mesh

simpli cation, our processing must be volume-aware.

To cra a proper algorithm, we rst compile a list of desiderata for model ab-

straction in a manufacturing context. Before examining this list, we discuss our

input. Finally, we restate the required properties of our output.

. . I : G F T F

Our processing takes a detailed polygonal mesh such as, e.g., the Eiffel tower

in Figure . . (le ) as input. While we assume the input itself to be manifold,

closed, and self-intersection free, we can pre-process problematic meshes with,

e.g., the recent generalized winding numbers [Jacobson et al. ]. Without loss

of generality, we assume the polygonal faces to be triangles.



. . A

We can think of an abstraction as “tighter” convex hull, adaptively lling in con-

cave indentations if narrow and deep as illustrated in Figure . . (top, red cir-

cles) in D. However, concave but wide corners shall be preserved (top, green

circles). A well-suited measure capable of differentiating between these cases is

rate of change of medial ball radii, starting where an intrusion becomes too narrow

(top rows, middle).

D abstraction shall preserve sharp edges, interrupted by an indentation with

high delity (bo om, upper le ). Furthermore, closing shall take the curvature at

the boundary of a concavity into account (bo om, upper right). Conceptually, we

can achieve D abstraction by rolling a ball over such narrow intrusions, steadily

connecting the two points where the ball is touching the intrusions’ boundaries

(bo om, lower le ). Moreover, abstraction shall avoid alternating any geometry

other than non-fabricatable concavities, especially sharp corners and edges (bot-

tom, lower right).

. . O : G E D

Our output models are tailored for additive manufacturing at small scales. To

ensure that thin and ne features are still perceived, we engrave them using a cali-

brated engraving depth (Section . ). While we generally avoid weak links in our

output models, we cannot give global structural strength guarantees and the tech-

niquebyStava and colleagues [Stava et al. ] couldbeused as a post-processing



Figure 7.2.1: Abstraction Concavities that are wide (top, green) shall be left
unchanged by our abstraction, while narrow and deep ones (top, red) shall be
closed. A well-suited measure for differentiating between these cases is rate of
change of medial ball radii, starting where intrusions become too narrow (top,
middle). Closing shall be aware of interrupted edges (bottom, upper left) and
curvature (bottom, upper right) at the boundary of the intrusion. Hence, a
well-suited abstraction operator acts like a ball rolling over intrusions, steadily
connecting the two points where the ball is touching (bottom, lower right).
3D abstraction shall leave concave corners and edges in non-critical regions
unchanged (bottom, lower left)



Figure 7.3.1: Calibrating Engraving Depth We designed a part with cylin-
drical intrusions of varying depths to identify the minimal engraving depth for a
particular printer-material pair.

for models with unusual weight distributions (such as, e.g., a heavy blob a ached

at the tip of a thin cylindrical support). Note, however, that a physics simulation is

tricky because it is almost impossible to simulate all interactions of a personwith a

printed object. Our technique, while simple, leads to perceptually pleasing results

while avoiding complex physics simulations.

We require our output models to describe their enclosed volume unambigu-

ously. Otherwise, they are either rejected by the AM so ware or printed incor-

rectly. Speci cally, we require our output models to be ee of self-intersecting faces,

manifold, and closed.

. C E D

To identify the minimal engraving depth dmin for each printer-material pair, we

created a calibration part with cylindrical intrusions of varying depths (compare

withFigure . . ). Note thatdminmight varywithorientations, especially onprint-

ers with signi cant differences between vertical and horizontal resolution. We cal-

ibrate for the “worst-case” and choose dmin such that engraved detail is perceived

from all viewing directions. e motivation for such a direction-invariant cali-

bration is two-fold: we do not always have control over the alignment of parts



prior to printing (e.g, when using online services or printers with automatic place-

ment). Furthermore, direction-dependent adjustments generally break symme-

tries for man-made shapes and, hence, are undesirable from a perceptual point

also.

. A G

We now describe the estimation of an abstraction of a given input geometry.

We rst review a Voronoi-based medial axis transform (MAT), providing us with

a union of balls representation for both, our input and its embedding. We then de-

velop our editing of ball correspondence (interior vs. exterior), resulting in scale-

aware abstracted surfaces. Togive the reader intuition, we start our discussionwith

the D case, then generalize the developed algorithms to the third dimension.

. . R G U M B

Given a dense enough sampling of a D curve, it was Blum [ ] who rst

observed that a subset of the corresponding Voronoi diagram (VD) provides us

with an approximate medial axis. is axis consists of all Voronoi vertices (points

closest to more than two samples) and the subset of Voronoi edges (set of points

closest to exactly two samples) not crossing the input curve (see Figure . . (a-

c) for an illustration). It can be shown that the approximate axis of a uniformly

increasing sampling converges to the curve’s actual medial axis [Schmi ].

If we associate each Voronoi vertex with a radius set to the distance to its closest

samples and mark the resulting D balls as either interior (green circles in Fig-



ure . . (d)) or exterior (red circles), we get a union of medial balls representa-

tion (MAT) for both, the interior and exterior of the given curve. (Note that we

restrict the exterior of the curve to a bounded, convex region. Hence, all Voronoi

cells are nite.)

Given these unions of interior and exterior balls, we can reconstruct the curve

by forming the power diagram (PD) of these balls (Figure . . (e)). Power dia-

grams are a generalization of Voronoi diagrams to weighted sites. Speci cally, sites

with centers and associated radii. While we use the Euclideanmetric to determine

to which Voronoi cell a given point p belongs to, we use the power metric when

dealing with sites with associated radii: p belongs to a power cell if the squared

Euclidean distance to the site’s center minus its squared radius is smaller than for

any other site. While the dual of Voronoi diagrams are Delaunay triangulations

(DT), the dual of power diagrams are so called regular triangulations (RT). For

convenience, we provide the reader with a formal de nition, intuition, and algo-

rithms for the construction of both diagrams and their duals in Appendix B. e

piecewise linear reconstruction of the curve (see Figure . . (f)) is then given

by the set of power edges that are dual to edges connecting interior and exterior

medial balls in the regular triangulation. e reconstructed curve is interpolating,

meaning that the samples are part of the reconstruction.

Most interesting about this algorithm is that it comes with provable guaran-

tees, conditioned on a sampling criterion and an assumption on the smoothness

of the sampled curve [Amenta et al. ; Amenta andBern ]: Given a twice-

differentiable curve C, we call a sampling of C ε-sampling (with ε smaller than )



(a) Sampling (b) DT (black) and VD (blue)

(c) Approx. Medial Axis (d) Unions of Medial Balls

(e) RT (blue) and PD (black) (f) Reconstruction

Figure 7.4.1: Unions of Medial Balls: For- and Backward Transformation



if the distance from any point p ∈ C to the nearest sample is at most ε times the

distance from p to the nearest point on the medial axis of C. Intuitively, this crite-

rion requires a denser sampling in regions of high curvature or where other parts

of the curve are close. Given a ε-sampling of a smooth C, both, the interior me-

dial axis and the reconstruction are topologically equivalent to C (same connected

components, number of loops, etc.). Most relevant in our context, however, is

the unconditional guarantee [Amenta et al. a] that the reconstructed curve is

manifold, closed, and self-intersection free.

Next, we discuss how we can generate a minimal, adaptive Poisson-disk sam-

pling that – in average– ful lls this criterion everywherebut near sharp features. At

corners or edges, themedial axis is touching the surface. Hence, wewould need an

in nite number of samples to satisfy ε-sampling. Given a polygon (piecewise lin-

ear curve), we rst create a dense poolEp of uniformedge samples: a sample lies on

any particular edge with probability proportional to its length. To efficiently draw

edges according to these probabilities (inO( )), we use Vose’s alias method [Vose

]. A er drawing a particular edge with end points a and b, we place a sample

according to a + U (b− a) where U denotes a uniform random variable on the

unit interval.

To generate a Poisson-disk sampling, we repeatedly pick a sample s ∈ Ep, then

invalidate all samples within a radius ε times the distance r of s to the closest point

on themedial axis, until there are no (valid) samples le inEp. is sampling, how-

ever, does not guarantee that samples are placed onto sharp edge corners. Hence,

our reconstructionwouldperformpoorlynear suchedge ends. InspiredbyCorsini



et al.’s work [ ], we add a second poolCp, containing all edge corners at which

π−α
π > . where α denotes the angle between the two incident edges. During

Poisson subsampling, we rst draw samples from this second pool Cp, invalidate

all samples within a εr-neighborhood from both pools, until Cp is empty. ere-

a er, we continue sampling from Ep in the manner described above.

What remains is a discussion on how to best choose the radii r used to invalidate

neighboring samples in the above procedure. Recall that the radius r associated

with a sample s can at most fall together with the Euclidean distance of s to the

closest point on the medial axis. However, because the medial axis is unknown,

we use closeness to an initial approximate axis instead. To this end, we compute

the Voronoi diagram of a Poisson sampling with a reasonably small but constant r,

then initialize the radii with the distance of the respective sample s to the closest

Voronoi vertex. Because the medial axis is touching the curve at its sharp corners,

we also consider closeness to these additional vertices for improved performance.

To ensure robustness, we set the radii to values of at least rmin, guaranteeing that

no two Poisson samples are closer than this minimal radius times ε.

Unfortunately, the above algorithm and theoretical guarantees do not directly

translate to the third dimension. AsAmenta et al. illustrate in their work ([Amenta

et al. ], Figure ), most but not all D Voronoi vertices lie close to the medial

axis, independent of how densely we sample. However, with a small adjustment,

the above construction and guarantees still hold. Speci cally, they suggest to only

use the subset of Voronoi vertices that are furthest away from its corresponding

sample s, one on either side of the input geometry. ey call this subset of vertices



poles. e intuition behind this choice is simple: if we sample densely enough,

corresponding Voronoi cells are long and skinny. Hence, the Voronoi vertices fur-

thest away from the corresponding sample s are most likely the ones closest to

the true axis. With this reduced set of Voronoi vertices and corresponding medial

balls, the above construction, ε-sampling condition, and guarantees translate to

D.

Our Poisson-disk sampling for triangular input works in a similar manner than

the one for polygons. Instead of one sharp corner pool, we have two: one for edges

and one for D edge corners. Given an input mesh, we rst extract all edges with

a normalized angle β
π > . between the face normals of the two adjacent trian-

gles. Next, we identify the sharp corners in this set of edges in the same manner

as described above for polygons. In D, we have – in addition to these corner and

edge pools – a third pool for triangles, denoted Tp: a sample falls onto a trian-

gle with probability proportional to the triangle’s area. Hence, we can again use

Vose’s method to draw a triangle (with vertices a, b, and a), then generate a uni-

formsampleusing ( −
√
U )a+

√
U ( −

√
U )b+

√
U U cwith twouniformran-

dom variablesU ,U on the unit interval. In contrast, Corsini et al. [Corsini et al.

] propose and use heuristics for drawing uniform triangle samples. Unlike

their methods, Vose’s algorithm allows to generate a sample with table look-ups,

independent of the triangles’ shapes. During Poisson-disk sampling, we rst draw

samples from the corner pool, invalidate all samples in an εr-neighborhood from

all three pools, until Cp is empty. Analogously, we continue with the edge pool

Ep, then with Tp, invalidating samples in both Ep and Tp, then only in Tp. Corsini



et al. [ ] show that the above uniform sampling methodology has blue noise

characteristics, hence, is independent of the connectivity of the inputmesh. is is

crucial when dealing with inputs with sliver triangles. Moreover, the subsampling

is extremely efficient when storing the pool samples in a spatial hash.

We applied both, the direct translation from - to D with the un ltered set

of medial balls (Voronoi-based approach), and Amenta et al.’s pole-based varia-

tion [Amenta et al. a] to simple shapes like the star in Figure . . . While the

pole-based clearly outperforms the Voronoi-based approach close to sharp edges

and corners (top row, middle column), the la er leads to an overall be er qual-

ity triangulation (bo om row, right column). When further examining both re-

constructions, we observed that the pole-based reconstruction is noisy, especially

in at regions. e reason for this uneven reconstruction are not – as one might

rst think – numerical instabilities in geometric computations (we ruled this out

by switching to an exact kernel supporting both, exact predicates and construc-

tors [CGA]). e problem is, in fact, that the pole-based approach is farmore con-

servative than necessary in that itmarks far toomanyVoronoi vertices as not being

part of the approximate axis. As the D comparison in Figure . . clearly unveils,

the pole-based approach lters out a signi cant fraction of the overall medial balls

(compare (c) with (d)). is leads to the formation of new neighbor relationships

in the regular triangulation, hence, to dual power edges with end vertices not part

of the initial sampling (compare (e) with (f)). While the pole-based approach is

still interpolating the samples (this is guaranteed if we keep one ball on either side

of a sample), these additional vertices tend to be slightly off the input geometry.



Figure 7.4.2: Reconstructions using the unfiltered set of Voronoi balls (top
row), poles and all Voronoi balls with radii larger than a threshold (middle row),
and poles only (bottom row). While the pole-based approach performs better
on edges (middle column), the unfiltered set leads to a smoother reconstruction
in flat regions (right column). Our heuristic (middle row) performs well on both.



ese observations suggest the following heuristic for the D case: rst, identify

all poles, then add back all medial balls with radii larger than a (small) threshold.

Because smallmedial balls are only kept if they are poles, we avoid the artifacts near

edges of the Voroni-based approach (in the middle column in Figure . . , com-

pare top with middle row). On the other hand, we keep almost all medial balls

in at regions, leading to a less noisy surface besides a boost in the quality of the

resulting triangulation (bo om and middle row, right colum). While we cannot

guarantee an error-free reconstruction (errors in vertex positions), we can make

errors arbitrarily small by se ing theminimal sampling radius rmin accordingly. For

additivemanufacturing, we can choose rmin to be smaller than the resolution of the

printer.

. . A : A M B C

e medial axis transform from the previous Section provides us with the ideal

building block for our abstraction operations as illustrated in Figure . . with a

D example. We rst extract all bridges from the exterior medial axis graph (b)

using Tarjan’s adopted depth- rst-search [ ]. Bridges are edges belonging to

trees within a cyclic graph. is step is necessary because our input may consist of

several individual curves, leading to several cycles in the exterior axis. Because we

bound the exterior, we always have at least one cycle. Next, wedetect all connected

components, resulting in trees rooted at a cycle, with branches lasting to each in-

dividual intrusion of our input (b, red). erea er, we iterate over all branches,

detecting intrusions where the rate of change of radii along a branch end is slow,



(a) Sampling (b) DT (black) and VD (blue)

(c) Poles (d) Un ltered medial balls

(e) Reconstruction (poles) (f) Reconstruction (un ltered)

Figure 7.4.3: Poles vs. Unfiltered Voronoi Balls (2D)



hence, the intrusion deep. We thenmark corresponding medial balls as belonging

to the interior (d), followed by identifying the surface between the edited unions

of medial balls, resulting in an abstraction (f). Concavities where ball radii are

changing quickly, are le untouched.

Unfortunately, our D abstraction does not easily translate over to D. is is

due to the fact that medial axis graphs for D inputs consist of curve and surface

patches. Because not all DVoronoi vertices lie close themedial axis, we only need

to consider a subset of the resulting D graph. Amenta et al. [ a] propose the

power shape, an approximate axis based on the set of poles, extracted from the

power diagram. However, power shapes have unintuitive edges, especially near

junctions. We tried several heuristics on both axis representations, with parings of

breath- and depth-frist-search strategies for rate of changemeasures most promis-

ing. However, it is too early to report on a best candidate.



(a) Sampling (b)Medial axis

(c) Medial balls (d) Edited medial balls

(e) Reconstruction (f) Reconstruction (edited)

Figure 7.4.4: Abstraction (2D)



. E D

For engraving detail, we need two operations: offse ing and set union. With

offse ing, we can shrink our abstracted surface by a calibrated engraving depth.

With a set union, we can unify the offset abstraction with the original geometry,

resulting in an engraved output. While we only discuss engraving in the following,

embossing can be done in a similar manner.

. . O

For offse ing, we rst compute theMAT as we described in Section . . , then

shrink interior and grow exterior balls by our calibrated, device-dependent engrav-

ing depth dmin. When shrinking, we reject all balls with radii smaller or equal to

dmin, avoiding sites with negative weights. erea er, we extract the offset sur-

face by constructing a regular triangulation and its dual. Note that Amenta and

colleagues [ a] mention this operation as an application of their power crust

algorithm.

. . S U B O

Interestingly, we can easily extent our processing to support robust set booleans.

Given two inputmeshesA andB, we rst compute an adaptive Poisson-disk sam-

pling, then compute their MATs. For unions, we reject all samples ofA inside B

and vice versa. We then construct a MAT on the remaining samples from both

sets, followed by a reconstruction of the surface between the ltered set of interior



and exterior balls. Similarly, we can compute the mesh bounding the intersection

and difference volume ofA and B. Because exterior and interior medial balls in-

tersect only shallowly, we could use our unions of medial balls for inside-outside

testing. However, the common ray-mesh intersection counting using an AABB

(Axis Aligned Bounding Boxes) tree on the input triangles, is more efficient and

avoids unnecessary rejects.

A D result of these operations is shown in Figure . . (e) for a union of two

rectangles. While the proposed processing leads to a high delity reconstruction

overall, it smooths over a concave corner near one of the two intersection points.

is is not surprising because the intersection point is far from both medial axes

(b), hence, its immediate neighborhood not sampled densely enough during sub-

sampling (c). To overcome this limitation, we add the intersection points to both

corner poolsCp andboth sets ofVoronoi verticeswhen initializing the sample radii

for A and B, respectively. is results in an adaptive sampling (d) that leads to

a high quality reconstruction everywhere (f). Adding intersection points for the

initialization of approximate distances to the respective medial axes is reasonable

because the combined axis has branches ending at these points (sharp corners).

Similarly, we compute all intersections between triangles ofA andB in D, then

add intersection points to the critical corner pool Cp, and uniform samples of the

intersection edges toEp (we ignore intersecting faces becausewe sample themany-

ways). A D union of two spheres is shown in Figure . . .



(a) Input (b) Approx. Medial Axes

(c) Individual Sampling (d) Combined Sampling

(e) Union (Individual Sampling) (f) Union (Combined Sampling)

Figure 7.5.1: Set Union (2D)



Figure 7.5.2: Union of Spheres

. D

We provide a demonstration of our two-stage processing on a basic example

in Figure . . : we start by abstracting our input (a), closing deep and narrow in-

trusions (b). In contrast to alpha shapes [Edelsbrunner andMücke ], shallow

intrusions are not rounded off and are reconstructed with high delity (b, upper

le corner). We then shrink interior and grow exteriormedial balls, resulting in an

offset abstraction (c). With a set union operation with the input, we then achieve

engraving (d) of abstracted detail. All sharp corners and low curvature concavities

are preserved (d, lower right).

For the Eiffel tower example in Figure . . , we used edge sampling pools Ep of

′ uniform samples. For extraction of the approximatemedial axes for initial-

izing adaptive distances for the subsampling of both, our input and abstraction, we

used a uniform disk radius of . times the diagonal of the axis aligned bound

box of the tower, then adaptively subsample with rmin set to . times the di-



(a) Input (b) Abstraction (black)

(c) Offset abstraction (black) (d) Engraved output (black)

Figure 7.6.1: Abstraction and Engraving (2D)



(a) Input (b) Abstraction (c) Engraving

Figure 7.6.2: Abstracting and Engraving Man-Made Shapes (2D)

agonal and an ε of . . For our input, ′ Poisson-disk samples were generated,

for our union of of input and abstraction, ′ and ′ , respectively. e sec-

ond sampling of the input is larger because we sample adaptively near intersec-

tion points with the abstraction. Because the abstraction contains less concavities,

hence, regions with high curvature, we need signi cantly less samples to represent

it with unions of medial balls.



. D F W

We have demonstrated a method capable of abstracting and engraving features

too ne and thin, for small-scale, additive manufacturing. While our D medial

graph analysis needs further re nements, our output models are all “watertight”

and self-intersection free – as desired.

Besides a thorough validation of our geometric operators, we plan to extend our

processing with local thickening and shrinking operations. As opposed to offset-

ting, such operators require non-uniform adjustments to ball radii. is is, how-

ever, challengingbecausemedial ballsmay touch at several locations, far apart from

each other. When growing or shrinking the surface in one region, we may effect a

completely different surface patch. Hence, we would need to carefully sort these

con icts, then copy medial balls, restricting effected regions to those in focus and

leaving others unchanged.

We believe that our MAT-based processing has several advantages over meth-

ods that rely on other representations. When working directly on surface meshes,

we lack volume-awareness. Hence, operations such as offse ing, or closing are ex-

tremely challenging, o en leading to self-intersecting faces, or non-manifoldness.

Implicit surfaces together with a polygonizer such asmarching cubes, on the other

hand, inherently deal with topological changes and allow us to generate “water-

tight” output. However, it is unclear how we would implement abstraction, local

thickening and shrinking on an implicit representation because it does not come

with an inherent medial axis.



e only true wisdom is in knowing you know nothing.

Socrates

8
Conclusion and FutureDire ions

In this thesis we have explored computational aspects of D manufacturing an

object’s elastic deformation behavior, articulation, and geometry. A er a brief

summary in Section . , we discuss future directions in Section . .



. S

Webuilt two custom stereo vision systems for the non-invasive acquisition of an

object’s elastic deformation properties, one with a hand-held, one with a robotic

contact probe. Our hand-held system is well-suited for the acquisition of force-

displacement samples of human so tissue, while our automated system is tailored

for repeatable high precision acquisition of elastic materials.

We devised a data-driven representation andmodeling technique that allows us

to digitize an object’s elastic deformation behavior, thereby simplifying the con-

struction of convincing deformable models by avoiding complex selection and

tuning of physical material parameters. Yet, our method retains the richness of

non-linear heterogeneous behavior.

We proposed a complete process for the physical reproduction and design of

materials with desired deformation behavior. We acquire deformation properties

of several printable base material and represent them using a non-linear stress-

strain relationship in a nite element model. We then express a desired behavior

with stacked layers of base materials using a combinatorial optimization, pruning

poor solutions from the search space with a branch-and-bound strategy.

We introduced a technique that facilitates the conversion of virtual articulated

models into a fabricatable format. Given a skinned mesh, we estimate posable toy

models, consisting of a set of jointed, rigid pieces that we can print assembled.

We start by extracting a set of potential joint locations, then maximize minimal

cross-sectional areasof hinges andball-and-sockets, while avoidingnon-functional



joints through inter-joint non-penetration and other fabrication constraints.

Lastly, we proposed a technique for the automated fabrication of detailed static

geometry. Inspired by souvenir manufacturing, we abstract non-fabricatable fea-

tures, then engrave them. To this end, we extend amedial axis transform [Amenta

et al. a] with a closing operator capable of lling narrow concavities while

keeping wide ones untouched. Our output is manifoled, closed, and intersection

free.

. F D

We use data-driven physics simulation paired with geometric processing as the

fundamental building blocks when solving our computational aspects of Dman-

ufacturing. For physical reproduction, we acquire properties from real-world ob-

jects, simulate them using the nite element method, then estimate models, fab-

ricatable using AM. For the automation of digital content, we estimate physical

objects that best approximate the static and dynamic properties of virtual models,

while guaranteeing that the output geometry ful lls the requirements for printing.

So far we have explored aspects of manufacturing an object’s elastic deformable

properties. However, we lack reproduction cycles for many other properties that

characterize an object’s behavior under motion such as, e.g., plasticity and viscos-

ity. We believe that our data-driven simulation-based approach that rst digitizes

properties of fabricatable base materials, then expresses a desired behavior within

this basis, can be adopted for reproduction of many other properties.

e vastmajority of digital D content is not directlymanufacturable due to the



lack of methods for the automated conversion to fabriatable formats. We estimate

piecewise rigid approximate models from the most widely used format in charac-

ter animation. However, a complete piecewise continuous reproduction with a

deformable skin, and automated actuation is le as future work. Our MAT-based

geometry processing is volume-aware and is guaranteed to output a “watertight”

model. Hence, our framework is well-suited formany other geometry problems in

the context of manufacturing.

Lastly, for complete physical reproduction of digital and physical objects, we

seekmethods for the concurrent acquisition, simulation, and fabrication of several

static and dynamic properties. So far our community has looked at many aspects

in isolation. However, to reach our goal of building Gershenfeld’s personal fabri-

cator [ ], we need to start integrating techniques in a single framework, for-

mulating combined material optimization for competing appearance, shape, and

interaction properties.



A
Jacobian for Parameter Fi ing

During ing of material parameters p = {λe, αe} through minimization of

Equation . , we need to compute the Jacobian of the deformed vertex positions

w.r.t. the parameters, i.e., J = ∂x
∂p , in each iteration of the Levenberg-Marquardt

algorithm.

Given external forces F and initial positions x , the deformed positions under



the linear co-rotational elastostatic problem [Müller and Gross ] are

x = K− (F+ K′x ) , (A. )

withK =
∑
e

[
ReKeRT

e
]
e andK

′ =
∑
e

[ReKe]e .

Here [. . .]e denotes the assembly of the submatrix of the e-th element into the com-

plete stiffness matrix. e Jacobian w.r.t. each parameter pi ∈ {λe, αe} can then

be computed as

Ji =
∂K−

∂pi
(F+ K′x ) + K− ∂K′

∂pi
x , (A. )

with
∂K−

∂pi
= −K− ∂K

∂pi
K− .

Note that we do not compute the inverse of K. Instead, we compute a sparse

Cholesky factorization, and then use this factorization many times for solving the

linear systems above. Recall the expression for the (unwarped) per-element stiff-

ness matrix in Equation . . e remaining terms are de ned as:

∂K
∂λe

=
[
VeReBT

e GBeRT
e
]
e ,

∂K′

∂λe
=

[
VeReBT

e GBe
]
e ,

∂K
∂αe

=
[
VeReBT

e HBeRT
e
]
e ,

∂K′

∂αe
=

[
VeReBT

e HBe
]
e . (A. )

In case some nodes are constrained not to deform (e.g., when the bo omof the

captured objects is xed), their known positions move to the right-hand side in

Equation A. , and the Jacobians must be slightly modi ed.



B
Voronoi, PowerDiagrams, and their Duals

In this section, we review Voronoi and power diagrams and their duals in Rd

and summarize how we can easily compute them using a convex hull algorithm in

d+ dimensions. While we keep the description of the algorithm general, we fall

back to the D-case (d = ) when discussing robustness aspects.



B. V P D

Voronoi diagrams are named a er mathematician Georgy Voronoy who rst

described them in their general form [ ]: Given a set P = {p , . . . , pn} of

n distinct points (called sites) in a bounded, convex region Ω ⊂ Rd, the corre-

sponding Voronoi diagram VD divides Ω into n convex regions (called Voronoi

cells), each consisting of all points closest to a particular site

VD(pi) =
{
q ∈ Ω : ∀pj ̸= pi : d(q, pi) < d(q, qj)

}
(B. )

where d(a, b) denotes the Euclidean distance between a, b ∈ Rd.

Voronoi diagrams under more general distance metrics and for more general

objects than points have been developed, among which power diagrams PD are

most similar to the original diagrams: given a sphere s ⊂ Rd with center p and

radius r, the power p of a point qw.r.t. s is given by d (q, p)− r . e powermetric

allows a simple geometric interpretation for q outside of s: p is the squared length

of the line segment fromq and a point tangent to s. For points at arbitrary position,

the power ofq is positive ifq is outside, zero if on, andnegative if inside s. Formally,

given a set S = {s , . . . , sn} of n distinct spheres, the power diagram is de ned by

PD(si) =
{
q ∈ Ω : ∀sj ̸= si : p(q, si) < p(q, sj)

}
(B. )

Note that the power cell corresponding to a sphere s can be empty if s is con-

tained in the union of the balls bounded by the remaining spheres. is condition,



however, is not sufficient [Aurenhammer ].

B. D C C H

As rst described by Brown [ ] and later re ned by Edelsbrunner and col-

leagues [ ], a Voronoi diagram in Rd can be computed using a transforma-

tion to the d + dimensional space and a convex hull algorithm therein. All rele-

vant properties of Voronoi diagrams naturally carry over to power diagrams as de-

scribed by Aurenhammer in [ ], which allows a natural extension of Brown’s

construction to power diagrams also. Because power diagrams fall together with

Voronoi diagrams if all radii are equal, we only discuss Aurenhammer’s construc-

tion here. Se ing all radii to zero, we directly get the construction for Voronoi

diagrams.

“Li ing” from Rd to Rd+ : e construction relies on the bijective mapping

Π of the power of a sphere s = (p, r) inRd to a hyperplane inRd+

Π(s) : xd+ = px− p + r (B. )

where x = (x , . . . , xd), and stems from the observation that the power distance

of a point qw.r.t. s is given by the difference of the segments between q and its ver-

tical projections q′ and q′′ onto the paraboloid xd+ = x and Π(s), respectively.

From this observation, it follows that the vertical projection of the intersection

Π(si) ∩ Π(sj) onto Rd separates the points closest to si from those closest to sj

under p. Hence, we are interested in the vertical projection of the boundary of the



intersections of all upper halfspaces delimited by these hyperplanes.

Duality inRd+ : Using geometric duality, wemap each hyperplane h in its gen-

eral form xd+ = ax+ ad+ with a = (a , . . . , ad) to a point in dual space

Δ(h) =
(

a,−ad+
)
, (B. )

thereby recasting our upper halfspace intersection as a lower convex hull problem

in dual space. Δ is known as the polarity function and the resulting point as pole.

Concatenating our “li ing” and duality transforms, we directly get the dual set S∗

of poles

Δ(Π(s)) = (p, p − r ) = (p, hp) (B. )

on which we compute the convex hull CH. e boundary of CH naturally splits

into a lower (part facing the Rd hyperplane) and an upper part and the vertical

projection of the lower boundary (ignore the d+ -th component of each point),

falls together with the regular triangulationRT dual toPD.

To get the power diagram from RT , we map the result back to primal space.

While the combinatorial part is straightforward (vertices map to cells, faces to

edges, edges to faces, and cells to vertices), the vertex positions need a careful treat-

ment. To this end, we fall back onto the D case (d = ) considered here and give

geometrically robust formulas for both the Voronoi and power diagram case.

Circum- and Orthospheres [Shewchuk ; Schewchuk ]: Given four

dual D points with their heights (a, ha), (b, hb), (c, hc), and (d, hd), delimiting a



tetrahedron, the corresponding orthosphere center o and squared radius ro are

(ha − hd)u× v+ (hb − hd)v× t+ (hc − hd)t× u
V

(B. )

and

(od) + (hd − d ) (B. )

where u = b − d, v = c − d, t = a − d, and V denotes the volume of the

tetrahedron.

In the Voronoi case, where all radii and, hence, all heights are zero, we compute

the circumsphere center c and radius rc using

d+
t (u× v) + u (v× t) + v (t× u)

V
(B. )

and
||t (u× v) + u (v× t) + v (t× u)||

V
. (B. )

All of the above constructions can be made robust using Shewchuk’s adaptive

predicates [ ]. For convex hull computations, we suggest using Clarkson’s

dynamic algorithm [ ].
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