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Fig. 1. We optimize the strength-to-weight ratio and mass distribution of binder-jetted, large-scale structures under worst-case loads, in order to make them
durable (left, middle, right) and stand (right). Given a combination of live, wind, dead, and thermal loads common in structural engineering, our optimization
identifies worst-case wind directions and contact regions, minimizing resulting peak stresses.

Large-scale binder jetting provides a promising alternative to manual sculpt-
ing of sandstone. The weak build material, however, severely limits its use
in architectural ornamentation. We propose a structural optimization that
jointly optimizes an ornament’s strength-to-weight ratio and balance under
self-weight, thermal, wind, and live loads. To account for the difference
in the tensile and compressive strength of the build material, we turn the
Bresler-Pister criterion into a failure potential, measuring the distance to fail-
ure. Integrated into an XFEM-based level set formulation, we minimize this
potential by changing the topology and shape of the internal structure. To
deal with uncertainties in the location of live loads, and the direction of wind
loads, we first estimate loads that lead to the weakest structure, then mini-
mize the potential of failure under identified worst-case loads. With the help
of first-order optimality constraints, we unify our worst-case load estimation
and structural optimization into a continuous optimization. We demonstrate
applications in art, furniture design, and architectural ornamentation with
three large-scale 3D printed examples.
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1 INTRODUCTION
For centuries, architectural ornaments have seen widespread use
as embellishments on buildings. Among sculptors, standstone is a
preferred material. Its distinct grain makes the stone easy to carve,
and facilitates the sculpting of very fine detail. However, manual
sculpting requires skill, is time consuming, and expensive.

Large-scale binder jetting provides a promising alternative. Vox-
eljet’s VX4000 [Voxeljet 2018], for instance, has a build tray size of
4 × 2 × 1m and jets at a stunning resolution of 300 dpi with a layer
thickness of 300 microns. Binder jetting of concrete is possible [D-
Shape 2018] but has yet to mature, and printers with even larger
build volumes are becoming available.

A weakness of binder jetting is the strength of its build material.
Similar to concrete, printed structures are far weaker under tension
than under compression. This asymmetry in strength is the reason
why concrete is traditionally reinforced with a grid of steel bars.

Analyzing structures under live loads, self-weight, and wind, we
observe that this asymmetry in strength severely limits the use of
binder jetting at the scale of available build tray sizes. Solid models
as well as models hollowed to constant thickness would break under
moderate loads. Hence, a structural optimization that accounts for
this asymmetry is key to making use of this technology.

In this paper, we propose an algorithm to jointly optimize an or-
nament’s strength-to-weight ratio and balance, under loads with pa-
rameterized uncertainties. To account for the asymmetry in strength,
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we recast the Bresler-Pister criterion as a failure potential, measur-
ing the distance to failure. Integrated into a mature XFEM-based
level-set formulation [Noël et al. 2015] that handles topological
changes and avoids remeshing, we then minimize this failure po-
tential by making changes to the ornament’s internal structure.
Freely standing in a park, sculptures are often climbed upon.

Because it is not known where a person would stand on or hold
onto a printed ornament, there is uncertainty in the so-called live
loads. A printed gargoyle, mounted on a cathedral, is exposed to
severe weather conditions. While a structural engineer can provide
us with a value for the expected wind magnitude, the direction of
wind loads is again unknown. Parameterizing these uncertainties,
we propose to nest

• a structural analysis to ensure feasibility of a design,
• a worst-case load estimation to identify the loads leading to
the weakest structure,

• and a structural or design optimization that adjusts our level
set parameters to minimize the failure potential under identi-
fied worst-case loads

into a unified continuous optimization. Using first-optimality con-
straints on our analysis (inner loop) and load estimation (mid-loop),
we can compute analytical gradients for our design optimization
(outermost loop).

We demonstrate our technique on three printed examples, illus-
trating applications in art, furniture design, besides architectural
ornamentation (see Fig. 1): we optimize a Gargoyle to be structurally
sound under worst-case wind loads (left), a stool to withstand un-
known live loads (middle), and a statue to stably stand (right). Per-
forming mechanical testing on bridge designs that are optimized
with the von Mises and the Bresler-Pister criterion, we validate our
failure potential.

Contributions. In summary, we contribute
• a strategy to turn failure criteria, including ones that account
for differences in tensile and compressive strengths, into fail-
ure potentials well-suited for optimization

• a nesting strategy to unify the analysis, a worst-case load
estimation, and a structural optimization into a continuous
optimization, interfacing with arbitrary parameterized loads

• “softened” Dirichlet conditions to avoid unrealistically high
stresses close to mount locations

While we implement a specific instance of this nesting strategy,
we see applications beyond our structural optimization.

2 RELATED WORK
Triggered by advances in manufacturing technologies, fabrication-
oriented design has received increasing attention in the computer
graphics community [Bermano et al. 2017]. We focus our literature
review on the design of 3D printed parts whose strength-to-weight
ratio and mass distributions were optimized. We first review prior
art in graphics, followed by a discussion of closely related work in
structural, shape, and topology optimization. We conclude with a
review of worst-case approaches.

Strength and Mass Distribution Optimization. To improve the
structural strength of printed parts, methods have been devised to

optimize print orientation [Umetani and Schmidt 2013], add struts
in the interior [Stava et al. 2012; Wang et al. 2013], or generate
Voronoi-based internal structures [Lu et al. 2014]. Related to our
work is Prévost et al. [2013] who optimize the internal mass distri-
bution of printed parts to make them stand stably. Follow-up work
includes dynamic balancing [Bächer et al. 2014] and fully submerged
and floating objects [Musialski et al. 2015]. In contrast, we optimize
a combination of structural objectives and mass property targets,
relying on a level set discretization to allow for topological changes.

Shape and Topology Optimization. An exhaustive review of prior
art in this domain is beyond the scope of this paper and we refer the
interested reader to standard books [Bendsøe and Sigmund 2004;
Sokolowski and Zolesio 1992] and an excellent survey [Deaton and
Grandhi 2014] on the subject matter. Here, we look at a selection of
works from structural optimization.

Based on traditional topology optimization, Wu et al. [2016] pro-
pose a GPU-friendly multi-grid approach that makes topology op-
timization more scalable, enabling resolutions of several million
elements. Subsequent work introduces infill optimization [Wu et al.
2018] that generates structures robust to material defects or load
perturbations. Other approaches optimize the shape of 3d printed
parts [Zhou et al. 2016] or the thickness of shells [Zhao et al. 2017].
We base our discretization on work by Noël et al. [2015], using

extended finite elements with a ridge enrichment to compute shape
derivatives and evolve the material interface with a level set dis-
cretization [Osher and Fedkiw 2003]. Other related approaches [Al-
laire et al. 2009, 2004; Wang et al. 2003] use level set propagation
for structural optimization.

Stress Minimization. The overwhelming majority of approaches
rely on the von Mises criterion to minimize or bound stresses (see,
e.g., [Panetta et al. 2017]). However, due to the asymmetry in the
tensile and compressive strength of binder-jetted material, the use
of the von Mises criterion is suboptimal. Departing from this crite-
rion, Luo et al. [2012] use the Drucker-Prager criterion to formu-
late stress constraints. In contrast, we base our formulation on the
Bresler-Pfister criterion, introducing an approach to derive distance
measures for general failure criteria well-suited for optimization.
A popular approach to minimize the potential of failure intro-

duces stress bounds on a per-element level (see, e.g., [Bendsøe and
Sigmund 2004]). However, while methods that aggregate local con-
straints into regions exist [Deaton and Grandhi 2014] , they tend
to be expensive due to the high number of constraints. We propose
to minimize the maximum failure potential among all elements by
measuring the distance to failure and implementing a smooth max.

Worst-Case Optimization. The solution of a structural optimiza-
tion largely depends on the applied loads. Most techniques assume
these loads to be well-defined. However, in practical applications
loads are subject to uncertainties. Addressing robustness under
small perturbations, traditional compliance optimization was first
extended [Cherkaev and Cherkaeva 1999; de Gournay et al. 2008],
followed by work that uses a level set discretization for stress opti-
mization instead [Allaire et al. 2009].

Modelingmore general loads, Zhou et al. [2013] formulate a worst-
case analysis under unknown loads that act normal to the surface.
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Table 1. Stress quantities.

Cauchy stress σ deviatoric stress s = σ − σm I

(σ1, σ2, σ3) (s1, s2, s3)

I1 = tr (σ )

= σ1 + σ2 + σ3

J1 = tr (s)
= s1 + s2 + s3 = 0

I2 = 1
2
[
tr (σ )2 + tr

(
σ 2) ]

= σ1σ2 + σ2σ3 + σ3σ1

J2 = 1
2 tr

(
s2) = 1

3 I
2
1 − I2

= 1
2
(
s2

1 + s
2
2 + s

2
3
)

I3 = det (σ )

= σ1σ2σ3

J3 = det (s)
= s1s2s3

Panetta et al. [2017] introduce a worst-case formulation to relieve
stress in microstructures under all unit loads. To optimize printed
parts to withstand unknown interactions, Ulu et al. [2017] assume
loads to act in negative normal direction. In contrast, we nest an
analysis, a worst-case load estimation, and a structural optimization
to interface with arbitrary loads, thereby minimizing a structure’s
potential of failure under uncertainties spanned by their parameters.

Langlois et al. [2016] use rigid body simulation to predict failure
modes of objects. Based on this measure, they formulate a stress-
constrained topology optimization. A simulation-based approach
could help with extending our set of supported worst-case loads.

3 BALANCING STRENGTH AND MASS
Our technique takes as input a 3D model that fits onto a build tray of
a targeted large-scale printer (see Fig. 2 Input). Besides the 3Dmodel,
the user provides strength and material parameters, specifies a set
of unparameterized (self-weight, thermal loads) and parameterized
loads (wind, live loads), and labels a subset of the surface as fixed
to the ground or to a mounting system. Putting users in control,
we ask them to specify the design space, limiting changes to the
interior structure to respective regions.

Given the input, we first estimate the loads that lead to the weak-
est structure (Worst-Case Loads, Sec. 5). Whenever we update load
parameters, we balance the internal forces with the applied load
(Simulation, Sec. 4). Given a set of worst-case loads, we then mini-
mize the potential of failure by changing the shape and topology of
the internal structure (Design Optimization, Sec. 6).
In the remainder of this section, we discuss failure criteria and

introduce our failure potential. We then discuss our nesting strategy
to formulate a unified, continuous worst-case optimization.

3.1 Failure Criteria
To analyze the soundness of a structure, structural engineers rely
on failure criteria [Chen and Saleeb 1994]: a structure reaches its
point of failure if it cannot carry any further load. Failure criteria
are functions of the state of stress σ and are parameterized with
material-dependent strength values where strength marks the limit
state of stress beyond which a structure fractures.
To better understand failure criteria, we first shed light onto

several stress quantities (see Tab. 1). From the Cauchy stress σ , we
can extract principal stresses σ1, σ2, and σ3. While the Cauchy stress
itself depends on the chosen coordinate frame, failure criteria are
best defined on quantities that are independent of a particular frame.
The invariants I1, I2, and I3 lend themselves, where I1 = σ1+σ2+σ3

is responsible for volume changes. Scaling I1 by a factor, we form
the mean or pure hydrostatic stress σm = 1

3 I1.
The pure hydrostatic stress, in turn, allows us to decompose the

Cauchy stress into one component causing pure shear and one
causing the volume to change: σ = s+σm I. Referred to as deviatoric
stress, the tensor s shares the principal directions with σ while
its principal stresses si = σi − σm are shifted by the mean stress.
By construction, the first invariant J1 = s1 + s2 + s3 is zero, thus
confirming that s does not cause the volume to change.Most relevant
in our context is the second invariant J2 of pure shear.
The separation into a pressure and a shear component provides

us with geometric insight (compare with Fig. 3 top, left): for a given
stress tensor σ with principal stresses (σ1,σ2,σ3), we can compute
the cylindrical Haigh-Westergaard coordinates (ξ , ρ,θ )

ξ =
1
√

3
I1 ρ =

√
2J2 θ = arccos

(√
3

2
s1
√
J2

)
.

All stress points σ with equal invariant I1 lie on a plane whose
normal points in the direction of the hydrostatic pressure axis σ1 =
σ2 = σ3, offset by the hydrostatic coordinate ξ . The deviatoric
coordinate ρ and similarity angle θ can be understood as polar
coordinates of σ within this deviatoric plane.
Failure surfaces separate stresses causing failure from unprob-

lematic ones and are best understood when we work with these
cylindrical coordinates. For isotropic materials, the labels attached
to the principal axes σi are arbitrary. Hence, the intersection of
the failure surface with a hydrostatic plane ξ has to be threefold
rotationally symmetric as we illustrate in Fig. 3 top, right. Failure
surfaces are further convex and smooth [Chen and Saleeb 1994].
Most common in graphics is the von Mises criterion with an

infinite cylinder of radius ρ =
√

2A as failure surface (see Fig. 3
bottom, left). The constant A(σ ) depends on a uniaxial strength
parameter σ . We therefore call this criterion a one-parameter model.
However, parameterized with a single parameter, the von Mises

criterion assumes the tensile strength σt and compressive strength σc
to be equal. Seeking a criterion that accounts for asymmetries in
strength, the two-parameter Drucker-Prager criterion with failure
surface ρ(ξ ) =

√
2A+

√
5Bξ is a candidate (see Fig. 3 bottom, middle).

Due to the linear dependence of radius ρ on ξ , the failure surface
is an open cone whose slope and origin is controlled by the two
constant coefficients A(σt ,σc ) and B(σt ,σc ).
Accounting for the asymmetry in strength, the Drucker-Prager

criterion is nonetheless modeling our build material to an insuf-
ficient degree: while tensile stresses are bounded (see tip of cone
in Fig. 3), compressive stresses can grow infinitively high while
remaining within the cone. Because no structure can withstand
infinitely high stresses, this criterion is too coarse of a model, and
the unboundedness makes this candidate problematic for use in
structural optimization.

A three-parameter criterion that has a closed failure surface and
better approximates the behavior of our build material is the Bresler-
Pister criterion ρ(ξ ) =

√
2A +

√
5Bξ + 3

√
2Cξ 2. As we illustrate in

Fig. 4 bottom, right, the criterion implements a parabolic dependence
of radius ρ on ξ . The coefficients A(σt ,σc ,σb ), B(σt ,σc ,σb ), and
C(σt ,σc ,σb ) are parameterized with the biaxial compressive strength
σb besides the tensile and compressive strength.
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Input OutputSimulation Worst-Case Loads Design Optimization

Fig. 2. Overview. As input, our optimization takes a 3D model, parameterized loads, grounded surface regions, and a design space (Input). To optimize the
strength-to-weight ratio, we first solve for the loads that maximize the potential of failure (Worst-Case Loads) under static equilibrium constraints (Simulation).
We then minimize the potential of failure under these worst-case loads (Design Optimization), adding objectives to reduce weight and place the center of
mass. To unify all three stages into a continuous optimization, we enforce first-optimality of our worst-case load estimation and simulation when solving our
design optimization. Our output structure is sound and withstands worst-case loads drawn from a subspace of uncertainty (Output).
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Fig. 3. Failure Surfaces. Stress point in cylindrical Haigh-Westergaard
coordinates (top, left). Intersection curves of surfaces with deviatoric planes
are threefold symmetric, smooth, and convex (top, right). The convexity
limits the curves to the three dotted triangles. Failure surfaces (bottom) for
the von Mises (infinite cylinder, left), the Drucker-Prager criterion (open
cone, middle), and the Bresler-Pister criterion (right).

All failure criteria we have discussed so far are independent of
the parameter θ . The intersections of the failure surface with the
deviatoric planes are therefore circular. For concrete-like materials,
these intersection curves are noncircular in general, changing from
a nearly triangular shape for tensile stresses to a more circular
shape for high compressive stresses. While four- or five-parameter
criteria model these subtleties [Chen and Saleeb 1994], advanced
mechanical testing equipment is needed to identify the required
strength parameters. While our recasting of criteria as distance
metrics (see next section) is generally applicable, the Bresler-Pister
criterion represents a good compromise between model accuracy,
practicality when it comes to characterization of its parameters (see
Sec. 7), and suitability for numerical optimization. Note that the
coefficients A, B, andC vary between criteria as we discuss in detail
in our supplemental material.

σ3σ2
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Fig. 4. Failure Potential. Bresler-Pister failure surfaces for several scale
factor values s (left). Intersection curves with the deviatoric plane (right)
motivate the use of s as a measure of distance to failure.

3.2 Failure Potential
Our ultimate goal is to define an objective to minimize a structure’s
potential of failure. However, while criteria allow us to evaluate if a
stress point σ lies on the failure surface or not, they do not provide
a means to measure the distance to failure. To turn criteria into
distance metrics, we propose to multiply the strength parameters
of their constant coefficients with a uniform scale factor s , then
solving for the latter. Illustrating our recasting on the Bresler-Pister
criterion, we refer the interested reader to our supplemental material
for detailed derivations for other criteria:
Scaling the strength parameters σt , σc , σb in the coefficients A,

B, C of the Bresler-Pister criterion with factor s , we observe that
we can express them with coefficients with unscaled parameters
A(sσt , sσc , sσb ) = sA(σt ,σc ,σb ), B(sσt , sσc , sσb ) = B(σt ,σc ,σb ),
and C(sσt , sσc , sσb ) =

1
sC(σt ,σc ,σb ), pointing the reader to the

Appendix for coefficient formulas. Plugged into the variant
√
J2 −

A − BI1 −CI2
1 = 0 of the Bresler-Pister criterion that is well-suited

for optimization (stress invariants can be computed with simple
formulas, see Tab. 1), we get a quadratic function we can solve for
the scale factor

s(σ ) =

√
J2 − BI1 +

√
(B2 − 4AC)I2

1 − 2BI1
√
J2 + J2

2A
,

ignoring the negative solution.
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As we illustrate in Fig. 4 right, the scale factor s provides us with
a distance metric that fulfills our desiderata, measuring the potential
of failure: it returns zero if the Cauchy stress is zero, taking on
increasing values in the interval [0, 1], the closer σ is to the failure
surface. For stresses on the failure surface, s(σ ) evaluates to 1. If the
Cauchy stress grows beyond failure, s monotonically increases with
the distance of σ to the failure surface.

Our goal is therefore to ensure that the distance-to-failure metric
s is below 1 at all locations within a structure under all expected
loads.

Fig. 5. Worst-Case Optimization To analyze structures, we discretize the
design domain Ω into finite elements (left): under a load l, vertices at rest
Xi deform to positions xi . To optimize their strength-to-weight ratio, we
parameterize uncertainties in load cases l(p) and represent the structure’s
volume Ωs ⊂ Ω with a discretized level-set function ϕ (middle). To control
the center of mass c, the difference between its horizontal coordinate and
its desired projected location c̄ on the ground plane is minimized.

3.3 Worst-Case Optimization
Discretized into finite elements (compare with Fig. 5 left) with n
vertices, we can analyze if a structure is sound under a load case
l ∈ R3n by minimizing the simulation objective

fsim(x) =W (X, x) − lT (x − X) (1)

to static equilibrium. The internal energyW is material-dependent
and defines the response of the structure to work performed by l
(see Sec. 4). At the equilibrium, internal forces ∂

∂xW (X, x) are in
balance with the applied load, and the vertices of the elements at
rest X ∈ R3n deform to the configuration x ∈ R3n . In other words,
we can solve for the deformed configuration x by minimizing our
simulation objective to first-order optimality дsim(x) = 0. After
analysis, we can evaluate the Cauchy stress at any location X ∈ Ω,
and check if the failure potential s is below 1.
While this is sufficient for analysis under clearly defined loads

(e.g., self-weight), live or wind loads bear uncertainty in their lo-
cations or direction. Parameterizing this uncertainty with a set of
parameters p (see Fig. 5 middle and Sec. 5), we aim at analyzing a
structure under all loads l(p). Hence, to see whether a structure is
sound, we seek to identify the parameters that lead to the maximum
potential of failure within the domain Ωs . While we could use a
smooth maximum function to approximate the max-operator, we
use an integral over the exponentiated distance-to-failure instead

ffail(p) =
∫
Ωs

[s(X, x(p))]γ dV , (2)

penalizing large values of s exponentially more with exponentγ > 2.
The higher the value of γ , the more we penalize peak stresses.

Whenever we adjust the parameters, the corresponding load case
will change, and hence also the deformed configuration. To identify
the parameters p that lead to the weakest structure, we maximize
the failure potential over an equilibrium constraint

max
p

ffail(p) s.t. дsim(p, x(p)) = 0. (3)

As we will describe in Sec. 5, we implicitly enforce the first-order
optimality of our simulation objective, minimizing −ffail with an
analytical gradient that we compute with the help of the implicit
function theorem.
Our ultimate goal is to optimize the strength-to-weight ratio of

a structure under identified worst-case loads. To be able to change
a structure’s shape and topology, we rely on a level-set formula-
tion [Noël et al. 2015] that uses extended finite elements (XFEM)
to avoid expensive remeshing. Postponing a detailed discussion to
Secs. 4 and 6, we hereafter assume the domain Ωs to be param-
eterized with a discretized level-set function ϕ ∈ Rn (see Fig. 5
middle).

Observing that adjustments to ϕ cause worst-case loads to move,
and, in turn, the deformed configuration to change, we aim at iden-
tifying the best trade-off between the potential of failure and the
weight or volume V of the structure

fdesign(ϕ) = wfail ffail(p(ϕ)) +wweightV (Ωs (ϕ)). (4)

Due to the continuous coupling between ϕ, p, and x, we seek to
formulate a unified, continuous worst-case optimization. To this
end, we propose to nest simulation, worst-case load estimation, and
structural optimization with first-order optimality constraints

min
ϕ

fdesign(ϕ)

s.t. дfail(ϕ, p(ϕ), x(ϕ, p(ϕ))) = 0
дsim(ϕ, p(ϕ), x(ϕ, p(ϕ))) = 0.

(5)

Solving our simulations andworst-case load estimation to first-order
optimality whenever we evaluate our design objective or its gradient,
we can compute analytical gradients for the unified problem (see
Sec. 6).
Optionally, the user may control the placement of the center of

mass c. This could help to make structures stably stand or, if fixed
to the ground, reduce stresses close to their mounting locations. To
this end, we let the user specify the desired location of the projected
center c̄, defining a line through c̄ in direction of the unit normal n
of the ground plane (see Fig. 5 right). In design optimizations, we
then add the objective

fCoM(ϕ) =
1
2
∥ (d(ϕ) · n)n−d(ϕ)∥2 with d(ϕ) = c(Ωs (ϕ)) − c̄, (6)

penalizing the distance between the horizontal component of c and
our target c̄. We use a weightwCoM to control its influence.

To make our weights independent of the dimensions of our input,
we divide the failure and weight objectives by the volume of the
filled structure Ω, and our center of mass objective by its cube root.
To optimize structures under several unparameterized and parame-
terized loads lk , we simulate to equilibria xk when minimizing the
maximum potential of failure among all loads k .
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4 SIMULATION
Our structures undergo only small deformations and we base our
formulation on the infinitesimal strain theory. Largely following
Noël et al. [2015], we keep the description of our analysis brief,
discussing our softened Dirichlet conditions in more detail.
We discretize the volume Ω enclosed by the input model with

tetrahedral elements and interpolate the undeformed nodes Xi and
level set values ϕi within the elements with standard linear shape
functions Ni (ξ ). To interpolate deformed nodes xi , we differentiate
between uncut (incident ϕi have the same sign) and cut elements
(ϕi have different signs), relying on standard interpolation for uncut
elements. For cut elements, we use an enrichment

x(ξ ) =
4∑
i=1

xiNi (ξ ) +
4∑
i=1

x̂i N̂i (ξ ) with N̂i (ξ ) = Ni (ξ )ψ (ξ ),

interpolating additional degrees of freedom x̂i with shape functions
N̂i (ξ ). To represent the discontinuity at the interface, we use a ridge
function [Moës et al. 2003]

ψ (ξ ) =
4∑
i=1

|ϕi | Ni (ξ ) −

����� 4∑
i=1

ϕiNi (ξ )

����� .
Note that the deformation gradient F is not constant for enriched

elements, and numerical integration is required to integrate the
linear strain energy density

Ψ(F(ξ )) = µε(ξ ) : ε(ξ )+
λ

2
tr2(ε(ξ )) with F(ξ ) =

∂x(ξ )
∂ξ

(
∂X(ξ )
∂ξ

)−1
,

where ε is the Cauchy strain and µ and λ are the Lamé constants. Due
to the discontinuity at the interface, we cannot apply a quadrature
rule to a cut element directly. We follow common practice and
decompose cut elements e into isoparametric sub-elements Es that
conform to the interface

We =
∑
s

∫
Es

Ψ(ξ ) det
[
∂X(ξ )
∂ξ

]
dξ .

With the determinant of the Jacobian of the mapping X(ξ ), we
account for the change of variables to elemental coordinates. Uncut
elements are analytically integrated:We = VeΨe where Ve denotes
the rest-volume of the element and Ψe the strain energy density for
its constant deformation gradient.

We represent the interface with a weak discontinuity and use an
ersatz material [Allaire et al. 2004] for elements and sub-elements
in the void space: we multiply the Young’s modulus for integration
points outside of Ωs with a scale factor (we use 10−4 for our demon-
strations). While we observe deformations of the void space to be
negligible, we can expect an increase in performance if we model
the interface with a strong discontinuity (see, e.g., [Van Miegroet
and Duysinx 2007]), removing the degrees of freedom for void (sub-)
elements from the equation system.

4.1 Softening Dirichlet Conditions
Rubber and foam is often used as shim material between a mounting
system and a structure. Hence, Dirichlet conditions, while straight-
forward to enforce, lead to unrealistically high stresses close to

mounting locations. We propose to use “softened” Dirichlet condi-
tions instead. To this end, we interpolate undeformed and deformed
nodes on boundary triangles

X(ζ ) =
3∑
i=1

XiNi (ζ ) and x(ζ ) =
3∑
i=1

xiNi (ζ ) +
3∑
i=1

x̂i N̂i (ζ )

with shape functions of their respective elements. We then measure
the distance between corresponding points on the undeformed and
deformed contact surface, decoupling their difference in normal
n(ζ ) and tangential directions (sliding)

d(ζ ) =
1
2
(x − X)T D (x − X) with D(ζ ) = w⊥nnT +w ∥(I−nnT ).

Note that our distance measure resembles the potential energy
of a linear spring ( 1

2 × stiffness × squared displacement). Hence,
we can interpret d as an energy density where the weights w⊥

and w ∥ control the stiffness in normal and tangential directions.
When setting weights, we use the stiffness of the shim material as
reference.
Analogously to integration over volumetric elements, we split

cut triangles into sub-triangles Ts , and integrate the density d over
the surface that is in contact with the mounting system

Wt =
∑
s

∫
Ts

d(ζ ) det
[
∂X(ζ )
∂ζ

]
dζ . (7)

However, in contrast to our volumetric integration, we skip triangles
(or sub-triangles) of elements (sub-elements) that are void.

For simulation, we add the additional degrees of freedom x̂i to
our 3n-vector x, and set the internal energyW to

∑
eWe +

∑
tWt .

5 WORST-CASE LOADS
When optimizing the strength-to-weight ratio of structures, load
cases have a significant influence on the performance of the result.
While an optimized structure is stable under specified loads, perturb-
ing the loads by small amounts can lead to failure. Analyzing several
optimized structures, we observe that this is the rule rather than
the exception. With our worst-case formulation, we aim at address-
ing this challenge, identifying the loads that lead to the weakest
structure.

In the most general case, the pressure or traction distribution on
a structure’s entire surface is considered unknown. Bounding the
maximum pressure, we could optimize the structure to withstand
general load cases. However, this scenario is overly conservative
and a large subset of loads are very unlikely or not even possible
to reproduce in a practical setting. At smaller scales, an end-user
might interact with printed parts in unpredictable ways [Ulu et al.
2017; Zhou et al. 2013], pressing and pulling on them. However, at
larger scales, load cases are more clearly defined, with uncertainties
spanning a small subspace.
Load types for large-scale structures are commonly specified by

a structural engineer and include wind and live loads, emulating
interactions if a structure is exposed to harsh weather conditions
(e.g., a gargoyle on a cathedral) or is climbed onto or sat on. While
we might estimate the maximum expected wind magnitude, the
direction of the wind is largely unknown. Similarly, a structural
engineer can advise in which regions a person could stand, hold
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onto, or sit on a structure and what maximum weight we can expect.
However, the specific locations within specified regions are again
unknown.
We will first discuss loads without uncertainties, namely self-

weight and thermal loads. While our worst-case optimization inter-
faces with arbitrary, user-defined loads, we will use wind loads to
illustrate how uncertainty in directions is modeled. Live loads will
serve as an example for loads with location uncertainties.

5.1 Specifying Load Cases
Due to the build material being weak and heavy, self-weight or
so-called dead load is an important load case. In regions where the
outside temperature varies significantly, thermal loads are induced:
especially in proximity of mounting locations, very high or very low
temperature can lead to high stresses. Thermal loads also further
motivate our “softening” of Dirichlet conditions, since hard Dirich-
let conditions would create unnaturally high stresses at mounting
locations.

Self-Weight. Self-weight is a volumetric load caused by acceler-
ation due to gravity in direction of the ground. Not making any
assumptions about the orientation of our input, we let the user
specify the 3D direction vector g, setting its magnitude to the gravi-
tational constant д. We then define an energy density

G(ξ ) = ρ(ξ )gT [x(ξ ) − X(ξ )]

that represents the work done by gravity (mass ×д × displacement)
per unit volume, displacing a node within the structure.

Analogously to internal energy, we integrate over (sub-)elements

Ge =
∑
s

∫
Es

G(ξ ) det
[
∂X (ξ )

∂ξ

]
dξ ,

setting the density ρ at integration points in Ωs to the density of
the build material. Elements or sub-elements in the void space are
skipped. To account for self-weight, we add

∑
e Ge to our internal

energyW .
We can also extend this potential to other types of volumetric

loads. A common strategy to analyze the performance of structures
under seismic loads is to apply loads in vertical and lateral direc-
tions, with magnitudes set to a fraction of the structure’s weight.
While we have not considered seismic loads when optimizing our
demonstrations, we could use this quasi-static approximation to
formulate a worst-case optimization, parameterizing the direction
and magnitude of g.

Thermal Loads. When a structure undergoes a change in temper-
ature ∆T , its volume changes proportionally. Assuming our build
material to be homogeneous and the temperature not to vary spa-
tially, the volume change due to thermal expansion and contraction
does not lead to internal stresses as long as the boundary is not
fixed. This observation motivates the use of an offset deformation
gradient

F̂(ξ ) = F(ξ ) − α∆T I

where α is the coefficient of thermal expansion of the build material.
Subtracting this offset changes the rest configuration of the structure,
causing stresses to peak close to boundary conditions.

azimuth angle

zenith angle

Fig. 6. ParameterizingWind and Live Loads For wind loads, we param-
eterize the uncertainty in directions with spherical coordinates (left). For
live loads, we parameterize the location of a load distribution with center
Xdist (right).

5.2 Specifying Worst-Case Loads
For wind and live loads, there are uncertainties in the load’s direction
or location. Serving as illustrative examples, we will formalize the
subspaces spanning these uncertainties with a set of parameters.

Wind Loads. Architectural ornaments are commonly subject to
wind loads with a known magnitude but unknown direction. To
parameterize unit directions, we rely on spherical coordinates, col-
lecting the azimuth angle (in xy-plane from x-axis) and zenith angle
(from z-axis) in a parameter vector. To avoid singularities at the
two poles, we restrict the zenith angle to the range [ε,π − ε]. The
azimuth angle can vary between 0 and 2π .

We apply wind loads to all or a user-selected subset of triangles.
From the parameterized direction and the expected pressure of wind,
we compute the load acting on an individual triangle by multiplying
its projected area (area × cosine of angle between normal and wind
direction) with the constant pressure (see Fig. 6 left). Multiplied with
the unit wind direction, we add a third of the load to each incident
node, repeating this procedure for all selected triangles.
In its simplest form, a wind load lwind has one global direction

and is acting on all triangles that face the direction. By combin-
ing the parameters of several directions in a vector pwind, we can
model wind that acts on several disjoint or overlapping regions
simultaneously.

Live Loads. When modeling live loads, we assume a load’s overall
magnitude, its direction, and its distribution kernel to be known,
restricting uncertainty to locations of their distribution centers
(compare with Fig. 6 right): a user first selects a subset of connected
triangles on the structure at rest, then specifies an initial location
Xdist within this region. The kernel function w(X,Xdist) is then
used to compute weights for nodes that are a distance ∥X − Xdist∥
away from the current center. To compute loads acting on selected
triangle nodes Xi , we distribute the constant 3D load ldist

w(Xi ,Xdist)∑
j w(Xj ,Xdist)

ldist,

normalizing the weights to ensure that the magnitude of the overall
load equals the norm of the specified load ldist.
Assuming the curvature of the selected region to be small, we

use a regularizer Xdist −

∑
i w(Xi ,Xdist)Xi∑
j w(Xj ,Xdist)

2
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to keep Xdist within the specified region. Note that only nodes of
selected triangles contribute to the weighted average. Hence, we
can interpret our regularizer as a spring that becomes active if the
distribution center is moving away from the selected region. While
small deviations of Xdist from the surface are possible, computed
loads always apply directly on the surface.

Collecting several centersXdist in a parameter vector plive, we can
combine several distributions in a single load case llive, summing up
their individual regularization terms in a regularizer R(plive). Like
point loads in the discrete setting, our live loads can be understood
as building blocks for more complex load cases in the continuous
setting. Because regions a person can stand on, hold onto, or sit on
tend to be flat, they approximate a large set of practical scenarios.
Distribution kernels can either be measured or specified by the user,
and we can use their support size to distribute an overall load to
several locations. For our demonstrations, we use Gaussian kernels.

5.3 Optimizing for the Worst-Case
Given a specific parameterized load l(p), we aim at identifying the
parameters p that maximize our failure potential ffail under equilib-
rium constraints

min
p

−ffail(x(p)) + R(p) s.t. дsim(l(p), x(p)) = 0,

adding a regularization term where necessary. Note that changes to
parameters change the load case, and the load case in turn changes
the quasi-static equilibrium. We simplify this dependency x(l(p)) in
the problem above and the gradient derivations below.

For numerical optimization, we treat the equilibrium constraints
implicitly, computing analytical gradients

дfail(p) = −
∂ ffail(x)
∂x

dx(p)
dp
+
∂R(p)
∂p

of our combined objective −ffail + R with the help of the implicit
function theorem

dx(p)
dp

= −H−1
sim(x)

∂дsim(l, x)
∂l

∂l(p)
∂p

where Hsim is the Hessian of our simulation objective.
Aswe describe inmore detail in our supplemental material, we use

the adjoint method for efficient computations. To handle additional
constraints c(p) such as, e.g., the bounds on our wind load param-
eters, we use a Lagrangian Lfail(p,λ) = −ffail(p) + R(p) − λT c(p)
with multipliers λ. Omitting an explicit treatment in the interest of
clarity, we point the reader to related work [Xu et al. 2018] where
first-optimality constraints on a Lagrangian are implicitly enforced.
While our worst-case loads are parameterized with only a few pa-
rameters, our objective tends to have several local minima. To al-
leviate the problem of getting stuck in local minima, we sample in
parameter space (we use 10 samples in our optimizations), setting
the initial guess to the sample with the smallest objective value.

6 DESIGN OPTIMIZATION
In the last two sections, we described our simulation and introduced
our worst-case load estimation. In this section, we will discuss how
we evolve our discretized level set function to optimize the strength-
to-weight ratio of an input structure.

Whenever we adjust the level set function ϕ, the rest configura-
tion of a structure changes, and hence also its response x. While
worst-case loads tend to move if we change X, the deformed con-
figuration will changes even if the worst-case load stays the same.
Captured in a nested continuous dependence x(ϕ, l(p(ϕ))), we seek
to optimize ϕ, measuring the structure’s performance under result-
ing deformations x.
To this end, we nest our simulation, worst-case load estimation,

and design optimization, unifying the three problems into the single
continuous optimization as outlined in Sec. 3

min
ϕ

fdesign(ϕ, x(ϕ))

s.t. дfail(ϕ, p(ϕ), x(ϕ)) = 0
дsim(ϕ, l(p(ϕ)), x(ϕ)) = 0,

simplifying the nested dependency in the interest of clarity.

6.1 Computing Gradients
Whenever we evaluate our design objective or its gradient, we
minimize our worst-case load estimation to first-order optimality.
Due to the static equilibrium constraint, first-order optimality of our
load estimation also implies first-order optimality of our simulation
objective.

Hence, we can compute analytical gradients of our design objec-
tive

дdesign(ϕ) =
∂ fdesign(ϕ, x)

∂ϕ
+
∂ fdesign(ϕ, x)

∂x
dx(ϕ)
dϕ

by applying the implicit function theorem to the first-order optimal-
ity constraints of our unified problem[ dp(ϕ)

dϕ
dx(ϕ)
dϕ

]
= −

[
Hfail(ϕ, p, x)

дfail(ϕ,p,x)
∂x

∂дsim(ϕ, l,x)
∂l

∂l(p)
∂p Hsim(ϕ, x)

]−1 
∂дfail(ϕ,p,x)

∂ϕ
∂дsim(ϕ, l,x)

∂ϕ


where дfail, дsim, Hfail, and Hsim are gradients and Hessians of our
failure and simulation objectives. To reduce the computational com-
plexity, we again make use of the adjoint method, pointing the
reader to our supplemental material for a detailed description.
Note that most entries of the gradient дdesign(ϕ) are zero due to

the following two reasons:
(1) all our three objectives ffail, fweight, and fCoM depend on

the domain Ωs , and whenever we adjust ϕ, Ωs changes. To
update nodes on the interface, the two rest nodes Xi ,Xj con-
necting a cut edge (ϕi and ϕ j have different signs) are linearly
interpolated [Noël et al. 2015]. Because Ωs only depends on
a level set value ϕi if at least one of the incident tetrahedra
is cut, the partial derivatives of fdesign with respect to ϕi are
zero except for nodes i close to the interface.

(2) the deformed configuration x(ϕ) only depends on a ϕi if node
i is incident to an enriched element (see Sec. 4). Hence, most
columns of the Jacobian of x(ϕ) with respect to the level set
values ϕ are zero.

Due to the many zero entries, the direct use of дdesign(ϕ) is prob-
lematic. If we, during a level set evolution, moved the interface
across element boundaries, the signed distance property would no
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longer hold, hence convergence impeded. To propagate the gradi-
ent from the interface to the volume Ω, we use a normal velocity
extension [van Dijk et al. 2013].

6.2 Evolving the Level Set
To evolve the interface, we rely on a simple Euler scheme

ϕt+1(α) = ϕt − α
дdesign(ϕt )

maxi |дdesign(ϕt,i )|
β (8)

where we normalize the entries of the extended gradient to the range
[−β, β], dividing them by the entry of maximum absolute value,
followed by a scaling with factor β (set to 0.1 in all our experiments).
To find the optimal α , we perform a standard backtracking line
search, starting from α = 1. We repeat this evolution step until the
gradient is sufficiently small, or the change in the level set negligible.
To guarantee that the interface does not cross the user-defined

design domain, we impose an upper bound on the level set values
(node i with negative ϕi are part of the solid) that are outside the
design domain but inside Ω. After every update, we enforce these
constraints by projecting the level set values to this bound, setting
the gradient entries to zero for values on the bound.
Note that our advection does not preserve the signed distance

field property. Hence, we periodically reinitialize ϕ with a simple
shortest-path heuristic. While this is sufficient in our context, more
elaborate reinitialization schemes exist [Morgan and Waltz 2017].

6.3 Updating Worst-Case Loads
After each evolution step, we generate new seeds (10 parameter
samples) for each worst-case load lk . We then evaluate our worst-
case objective −ffail+R for each seed, running a full load estimation
only for the one with smallest objective value. If the structure is
(1) weaker under the resulting load than under any of the existing
load-parameter pairs and (2) the set of parameters is sufficiently
different from existing ones, we add this load-parameter pair and
then optimize the structure under all pairs (applied sequentially, not
simultaneously). During design optimizations or when estimating
worst-case loads, we keep refining the parameters for each pair,
starting from the previously optimal set. If two sets of parameters
become too close, we only keep one of them. Our worst-case load
update can be understood as a stochastic process [Langlois et al.
2016], increasing robustness w.r.t. local minima.

7 RESULTS
We optimized the strength-to-weight ratio of a total of four models
(see Figs. 1, 7, 8, 9, 10 and the accompanying video), tailored for
3D printing with Voxeljet’s binder jetting technology. We printed
three out of the four structures (Elephant, Stool, Gargoyle), and
use the fourth result to discuss scalability (Dragon). For validation
and discussion of failure criteria, level set initialization, and mesh
resolution, we use a bridge example.

Binder Jetting & Infiltration. We printed our models on a Voxeljet
VX1000. The VX1000 has a build volume of 1.0 × 0.6 × 0.5 m, a
resolution of 600 dpi in the x andy direction, and a layer thickness of
300 µm along the z axis. Silica Sand is used together with Voxeljet’s

phenolic resin binder. The remaining sand can be removed and
recycled as we illustrate in the accompanying video.
To increase the strength and durability of printed structures,

we can infiltrate them with an epoxy resin. For infiltration, the
structures are best placed in a plastic bag, with an inlet pipe reaching
into a container filled with resin, and an output pipe connected
to a pump. Alternatively, we can place a part into a resin-filled
container, and, in turn, place the container into a vacuum chamber.
We infiltrated our Gargoyle and Stool examples.

Material Testing. To characterize material and strength parame-
ters, we perform standard mechanical testing on cylindrical spec-
imens: in a first test, we compress a cylinder along its axis, es-
timating the Young’s modulus E and Poisson’s ratio ν from the
measured transverse and longitudinal strain. To estimate the com-
pressive strength σc , we divide the failure load by the cylinder’s
cross-sectional area. The same testing machine can be used to char-
acterize the tensile strength. To this end, we compress cylinders
transversally (split-cylinder test). Hence, they fail due to tensile
stresses. We then calculate the tensile strength by dividing the mea-
sured failure load by πrh where r is the radius and h the height of
the specimen. To characterize the biaxial compressive strength of
the material, advanced mechanical testing is required. We follow
standard practice, setting σb to 1.2σc . The material tests show a
small anisotropy in material strength (print-direction dependence).
We assume an isotropic material in our optimizations, setting the
strength values to conservative estimates (smallest, measured values
for σc , σt , and σb ).

In our optimizations, we use E = 0.66 GPa, ν = 0.15, ρ = 1265 kg
m3 ,

σt = 0.8 MPa, σc = 5.2 MPa, and σb = 6.2 MPa for the uninfiltrated
material, and E = 2.43 GPa, ν = 0.15, ρ = 1426 kg

m3 , σt = 2.0 MPa,
σc = 16.3MPa, andσb = 20.0MPa for the epoxy-infiltratedmaterial.
To ensure structural integrity, we multiply the strength parameters
with an additional safety factor of 0.5 before running optimizations.

Elephant. With our Elephant, we illustrate applications in design-
ing stably-standing sculptures that are structurally sound under
their own weight. To balance the model on one foot, we optimize
our design objective fdesign with the optional center of mass ob-
jective fCoM. Only self-weight is considered, and no post-printing
resin-infiltration is applied. In Fig. 7, we show the optimized result
and the printed statue (top). The projected centers of mass and vi-
sualizations of the failure potential s(σ ) for the solid, the optimized,
and the constant thickness models are shown at the bottom. Note
that the constant thickness model uses the same volume as our
optimized version, illustrating what an artist might do without the
help of a structural optimization. As the projected center of mass is
outside the support polygon for our solid and constant thickness
models, they would both topple over under self-weight. The solid
model would further break under self-weight, illustrating how weak
the build material is and further motivating the need for a structural
optimization.

Stool. Furniture, especially chairs and stools, have to withstand
people sitting on them in various ways. For our Stool, we specify a
live load with ldist = 900N (Gaussian distribution with spread 0.1
m), acting on the top surface of the model. The base is held fixed.
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Solid                 Constant thickness               Optimized

Fig. 7. Our Elephant is optimized to balance under self-weight (top). For
the solid model (bottom left), the projected center of mass lies outside the
support polygon. The visualization of the failure potential (bottom) shows
that the model would break if fixed to the ground (blue region). The constant
thickness model (bottom center), while structurally sound, would topple
over. Our optimized model (bottom right) is sound and stands stably (see
also image of printed model).

Fig. 8. For our Stool, we run a worst-case optimization under a live load
that acts on the top surface, representing loads of a person sitting on the
stool at unknown locations (bottom, right). The optimization identifies the
worst-case loads (top left) that create the largest moments, reinforcing the
center of the stool (top, center) and adding small struts to support the seat
(top, right). Under worst-case loads, the optimized model is stable (bottom
center), while a structure with the same volume but constant thickness
would break (bottom left, areas with s(σ ) above 1 are marked in blue).

Fig. 9. The Gargoylemodel (top left) is constrained at its base and subjected
to four separate worst-case wind loads (second row). The optimization adds
material to the connection between the gargoyle and the base (third row),
where the wind induces the strongest moment. Looking at a specific wind
load, the resulting structure is stable (bottom right), while a structure with
the same volume, but constant wall thickness would break (bottom left,
areas with a distance-to-failure s(σ ) above 1 are marked in blue).

During our worst-case optimization, a set of five worst-case loads
are identified, all close to the boundary of the seat, hence inducing
moments that lead to peak tensile stresses. The optimization adds
small struts to distribute the loads (see Fig. 8 top right).

Gargoyle. As a typical decorative element on old cathedrals, gar-
goyles are prominent building features that experience large mo-
ments due to their own weight and strong winds. We apply our
method to a Gargoyle model and, besides gravity, also consider
worst-case wind loads with a wind pressure of 2.5 kPa. Fig. 9 shows
the four worst-case wind directions identified during the optimiza-
tion: two wind loads that increase the load in direction of gravity,
and two wind directions that push the statue to the side, targeting
weak spots at the feet. Our optimization successfully strengthens
the model against these loads by thickening the parts of the base
and its connection to the figure where tensile stresses tend to peak.

Asian Dragon. We demonstrate the scalability of our method on
a virtual example, using the Asian Dragon model, scaled up to fill
the build volume (4 × 2 × 1m) of the Voxeljet VX4000. Envisioning
such a statue to be placed outside, we have to guarantee its stability
under self-weight and temperature changes (+50◦C and −30◦C). In
addition, we assume moderate live loads to act on the structure (e.g.,
a child sitting on the Dragon). To this end, we specify a worst-case
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Fig. 10. We subject the Asian Dragon model (top left) to thermal and worst-
case live loads, and compute the optimized internal geometry (top right).
We show the plots of the distance-to-failure s(σ ) for the most extreme load
case, thermal expansion, with values above 1 marked in blue (bottom). For
this load case, the full model (bottom right) would break at the feet. The
model with constant thickness and volume equal to the optimized model
(bottom center) has less stress placed on its feet, but additional failure points
along its back due to the thermal expansion. The optimized model (bottom
right) alleviates stresses at these critical points.

Table 2. We report number of elements (# elems), dimensions (dim), number
of iterations (# it), complexity of a single iteration (it. time), weight of the
optimized structure (weight), and the ratio between optimized and initial
volume (ratio) for our Elephant, Stool, Gargoyle, and Asian Dragon (demo).
The timings were collected on a 4.0 GHz Intel Core i7-6700K quad-core
processor with 32 GB of RAM.

demo dim [cm] #elems #it it. time [s] weight [kg] ratio [%]

Elephant 58 × 51 × 71 133197 12 130 8.5 34.8
Stool 46 × 46 × 60 30540 21 200 24.1 56.8
Gargoyle 85 × 49 × 39 132252 17 1401 19.2 31.9
Dragon 229 × 134 × 100 123963 54 458 49.2 16.2

live load of 50 kg, restricting its location to the region at the top of the
center of the arch. We keep the feet fixed to the ground. Simulations
show that the solid and constant thickness models would fail under
thermal expansion (see Fig. 10). The optimization adds material at
the feet, reducing excessive stresses due to the thermal expansion
in the rest of the model. The live load, on the other hand, does not
lead to critical stresses in any of the models.

Optimization. For our Elephant, we set the objective weights
wfail,wweight,wCoM to 4 · 1010, 103, 104, respectively. For all other
demonstrations, we use wfail = 4 · 109 and wweight = 104. We set
the exponent γ in our failure objective to 8 for all demonstrations,
and 4 for our validation example (bridge). To set the weights for our
“softened” Dirichlet conditionsw⊥ andw ∥ , we use the approximate
thickness and Young’s modulus of the shim material. For our Ele-
phant and Gargoyle, we chose a hard rubber material (E = 0.1 GPa)

with a thickness of 1 cm, setting both weights to 1010 N
m3 . For the

Stool, we use the same rubber material forw⊥. However, to allow
for sliding, we set the parallel weightw ∥ to the significantly lower
value 104 N

m3 . Our Dragon model expands significantly due to ther-
mal loads. To reduce stresses at the mounting locations, we assume
the shimmaterial to be 5 cm thick polystyrene foam (E = 0.005 GPa),
setting the weights to 108 N

m3 . We report key statistics including the
weight of the optimized structure, the achieved volume reduction,
and the overall time it took to optimize them in Tab. 2.

7.1 Validation
In the following section, we validate our choice of failure criterion
and our worst-case load optimization, illustrating the sensitivity of
our results with respect to changes in resolution and initialization
on an example.

von Mises Bresler-Pister
Strength: 858.6 N Strength: 1075.8 N

Fig. 11. Failure Criteria For the bridge example, we tested fabricated
examples optimized with the von Mises and Bresler-Pister failure criterion.
For the same amount of material, the Bresler-Pister-optimized structure
shows a higher strength.

Failure Criteria. We compare the Bresler-Pister failure criterion
to the widely used von Mises criterion by measuring the strength
of a bridge optimized using either of these failure criteria. Fig. 11
shows the two results, optimized for a load applied to the top center
of the model. Both bridge designs have equal volume (we adjusted
the objective weights accordingly). Since the Bresler-Pister criterion
better approximates the true failure criterion, it manages the mate-
rial budget more effectively. The result uses less material in regions
of compression—the connection between struts and the sides of
the bridge–and more material in the center, where tensile stresses
appear. We fabricated these examples and tested them in a com-
pression testing machine, revealing that the structures break under
loads of 858.6 N and 1075.8 N for the von Mises and Bresler-Pister
criterion, respectively (see accompanying video).

Mesh Resolution. We investigate the effect of the resolution of the
underlying simulation mesh by optimizing the bridge example with
a centrally applied fixed load. Fig. 12 shows that the optimization
creates qualitatively similar meshes for a range of resolutions, with
lower resolutions showing some discretization artifacts. Only the
coarsest mesh resolution leads to a significantly different result.

Initialization. Our structural optimization is sensitive to the ini-
tialization as we illustrate in Fig. 13: if we start from the minimal
volume (top, outer shell with user-specified thickness), the opti-
mization converges to a solution with significantly less volume (but
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Vmax = 4.8 · 10−4V0 Vmax = 7.1 · 10−5V0

Vmax = 1.9 · 10−5V0 Vmax = 1.2 · 10−5V0

Fig. 12. Mesh Resolution We show the effect of changes to the resolution
of the simulation on our bridge example. We report the maximum tetrahe-
dron volume Vmax for each of the results as a fraction of the total volume
V0. The optimization finds a strut-based solution even for relatively coarse
meshes.

Initialization Result

Fig. 13. Initialization We show the effect of the initialization (left) on the
final result (right) of our optimization. Starting from a minimal volume,
we arrive at a strut-based solution (top). With an initialization that adds
material to the sides while leaving the center of the bridge void, we arrive
at a different solution that uses more material (middle, cut open to reveal
structure). Even an increase in resolution cannot push the optimization out
of this local minimum (bottom).

similar strength) than if we start with material on the two sides
of the bridge (two bottom rows). For the latter, the local minimum
persists even if we increase the mesh resolution (bottom row). While
our optimization will only reach a local minimum, our examples
indicate that if we start from the minimal volume we can generally
reach a solution that does not break under the specified loads, even
though it might not be the globally optimal result that uses the least
amount of material.

Failure Objective Energy Landscape. The behavior of the energy
ffail with respect to changes of a load’s location illustrates how
sensitive a model is to changes in load cases, motivating the use of
worst-case loads. Fig. 14 shows the energy landscape of the bridge
example, for a minimal volume model as well as models optimized
under a fixed load and worst-case loads. We compute this energy
landscape by varying the load location on top of the model, visual-
izing the position-dependent objective value. We observe that the
energy is well-behaved, and our optimization finds the worst-case

Fig. 14. Failure Objective Energy Landscape We show the energy land-
scape (bottom) of the objective ffail for all positions of a load applied to the
top surface of the bridge. For an unoptimized bridge (left), the load location
that leads to the highest energy—the location of the worst-case load—is in
the center. For the fixed-load optimized bridge (center), the locations for
the worst-case loads move to the two ends, and the effect of these loads is
weaker. The bridge optimized under worst-case loads (right) no longer has
any load locations that would lead to failure.

load positions in all cases. While the optimization under a fixed
load leads to an intuitive solution with struts from the corners to
the center, the model is susceptible to changes in load position.
The model optimized under worst-case loads, on the other hand,
shows no weak spots, having added more material to counteract all
possible loads, favoring designs with a larger number of struts, or
completely filled regions.

8 CONCLUSION
We presented a method for structural optimization that accounts for
the asymmetric strength behavior of many common build materials,
specifically considering binder-jetted sand prints, to create models
with an optimized strength-to-weight ratio. We introduced a general
framework for parameterized worst-case loads which models the
inherent uncertainty of load cases, reducing the burden to find the
optimal load parameters. We demonstrated its advantages on the
continuous space of parameterized live and wind loads, where a
manual design of an optimized model would be infeasible. Finally,
we combined these components into a unified continuous optimiza-
tion by nesting analysis, worst-case load estimation, and structural
optimization, an approach with promising potential for applications
beyond just structural optimization.

Limitations and Future Directions. Our worst-case loads only have
very few parameters, and our add-but-not-replace worst-case opti-
mization is effective in circumnavigating local minima. However,
while we can significantly improve the strength-to-weight ratio of
structures, we cannot guarantee global optimality.
The standard XFEM discretization has been known to overesti-

mate the stress in elements where the level set cut results in a very
small subelement. Since our stress objective is formulated as an inte-
gral, its sensitivity to these inaccuracies for higher stresses depends
on the element size as well as the exponent γ : for high values of
γ , we give inaccuracies in small subelements more weight while
lower values lead to designs where material is used to strengthen
regions with non-critical stresses. While these inaccuracies, for our
choice of γ , remained within reasonable bounds for all our demon-
strations, a specialized approach such as the robust stabilized stress
computation [Sharma andMaute 2018] could improve the prediction
accuracy and convergence of our method.
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The Bresler-Pister criterion assumes isotropy. Mechanical tests
showed that this assumption is valid for Voxeljet printers. Optimiz-
ing structures with anisotropies in strength and material parameters
is, however, an exciting avenue of future work.
Even though build volumes will increase in size, there will be

bounds on the size of models we can print. To make our method
scalable and independent of the size of build trays, a decomposi-
tion into topologically interlocking building blocks [Fu et al. 2015;
Molotnikov et al. 2015] provides an exciting direction for future
research.
We do not model handling. While we have not observed any

problems when printing and infiltrating our models, optimizing the
structure for expected handling loads is an exciting future direction.
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APPENDIX
The constant coefficients of the Bresler-Pister criterion are param-
eterized with the compressive σc , the tensile strength σt , and the
biaxial compressive strength σb of the build material:

A(σt ,σc ,σb ) =
1
√

3
σcσbσt (σt + 8σb − 3σc )

(σc + σt )(2σb − σc )(2σb + σt )

B(σt ,σc ,σb ) =
1
√

3

(σc − σt )(σbσc + σbσt − σcσt − 4σ 2
b

(σc + σt )(2σb − σc )(2σb + σt )

C(σt ,σc ,σb ) =
1
√

3
3σbσt − σbσc − 2σcσt

(σc + σt )(2σb − σc )(2σb + σt )
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