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1 Introduction

Edge-preserving smoothing and super-resolution are classic and important prob-
lems in computational photography and related fields. The first addresses the
problem of noise removal from images while preserving its sharp features such as
strong edges. Image up-sampling, on the other hand, addresses the problem of
spatial resolution enhancement of images. The goal is to obtain a high-resolution
version of an image by sampling it on a denser lattice. This work investigates
an image processing framework based on locally weighted kernel regression. A
major strength of the presented tools is its generality. It allows to not only
address both of the above-mentioned problems but also to reconstruct images
from irregularly and sparse sampled pixels in a single framework.

There are two major kinds of techniques that use locally weighted least squares
in the context of image processing: Moving least squares (MLS) and kernel
regression (KR). Both formulations are very similar, but their origin is differ-
ent. KR has its origins in statistics and is usually formulated in terms of an
nonparametric estimation problem. MLS, on the other hand, is more seen as
a powerful local scattered data approximation technique. Both techniques are
well-established and their theoretical properties are well-studied, but practically
speaking they both have the same goal:

Given a set of data points (xi, fi) ∈ Rd × R, both KR or MLS can be used to
find a global function f(x) that approximates or interpolates the (measured)
values fi at the locations xi.

An image in its continuous form can be interpreted as a two dimensional function
I(x, y) where the pair (x, y) denotes the spatial coordinates. A discrete image,
on the other hand, is a set of intensity values Ii at discrete pixel positions
(xi, yi). KR and MLS seem therefore to be appropriate ways of deriving a
continuous image from those discrete pixel intensities. This continuous image
representation can then be resampled and therefore allows applications such as
up-sampling and reconstruction.
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In this work, we will take on the KR-glasses. The major motivation behind this
choice is that we use a formulation based on a local Taylor expansion which is
commonly used in the kernel regression theory. The use of a Taylor polynomial
allows us to directly compute the resulting image and also – as an option –
derivatives. It is therefore computationally more efficient and direct than a
MLS-based formulation which usually involves two computation steps to get
the same result: First, coefficients of a linear combination of a set of monomials
is fitted and, in a second step, this coefficients are used to evaluate the resulting
approximation at the current location. However, this choice comes with a cost.
Formulations based on Taylor expansions are less intuitive and interpretable. It
is also important to mention that the resulting approximation is the same, if
the order of the Taylor expansion (KR) and the polynomial (MLS) is the same.
1

A classic linear KR method allows us already to up-sample, smooth and re-
construct images, but high-frequent features such as edges are not preserved
and outliers (salt and pepper noise) are not handled very well. There are two
major ways of solving those problems. Either we make the kernel function data-
dependent or we use a robust local KR estimator. Data-dependent kernels lead
to higher order bilateral filters and allow feature-preserving smoothing. How-
ever, the performance of these non-linear bilateral filters highly decreases when
applied to images with salt and pepper noise. There, the robust non-linear KR
estimator outperforms both, linear and bilateral filters, to a high extend.

1.1 Overview

We will start our discussion with a short overview over the previous work done
in the area of MLS and KR-based techniques for image processing (Section 2).
We then introduce the KR framework for images and discuss both non-linear
extensions in detail (Section 3). In the results section (Section 4), we compare
the performance of the linear KR method with its two non-linear versions. We
refer to those three techniques as:

• classic kernel regression (linear)

• bilateral kernel regression (non-linear)

• robust kernel regression (non-linear)

1Taylor polynomials and monomials span the same space – only the fitted coefficients are
different. This only holds, of course, if we use the same local (kernel) weights.
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2 Related Work

Image denoising, reconstruction and upsampling are difficult and fundamental
image processing problems. As a result, many techniques have been suggested
in recent years. Most of them focus on one specific problem and present a novel
model that leads to more compelling results under certain assumptions. An
example of a recent paper that addresses the problem of image up-sampling is
given in [3]. As opposed to most other techniques, it relies on edge dependencies
and not on some sort of smoothness assumption. Their up-sampling results
outperform the ones presented in this work.

However, our goal here is a framework that allows to address not only super-
resolution, but also the problems of denoising and reconstruction. Its major
strength is its generality.

Among those general techniques, MLS and KR-based methods seem to be most
widely used. We therefore restrict our discussion of related work to those two
methods:

MLS-based methods. An early paper that uses MLS in the context of image
denoising and reconstruction is given in [4]. They use two different kinds of
robust estimators that minimize local differences in a weighted l1 and l0 sense.
They present them as generalized bilateral filters and show rather preliminary
results. A more recent paper [1] applies MLS to superresolution and noise
filtering. It focuses more on investigating the effect of the two major parameters,
scale (sigma in Gaussian weights) and approximation order, and presents a cross-
validation technique to find the best parameters automatically. They also show
that MLS and KR are closly related concepts. Their discussion, however, is
restricted to the classic linear case.

KR-based methods. A paper that discusses multivariate locally weighted
least squares regression and presents derivations for bias and variance of the
underlying regression estimator is given in [6]. We use a similar notation to
derive the bivariate formulation in this work. A paper that uses a KR-based
method as an edge-preserving smoother is givn in [2]. The later uses a robust
non-linear estimator similar to the one we use in this work. Most related to the
presented work here are the papers by Takeda et al. [8] and [7]. They apply KR
in the context of image denoising, reconstruction and also up-sampling. They
discuss higher order bilateral filters based on a data-dependent kernel and also
present a novel kernel (steering kernel) that leads to better results. Robust
estimators, however, are not used in their work.

A paper that uses KR in the context of surface reconstruction from point clouds
is given in [5]. We also use a robust local KR estimator based on Welsch’s ob-
jective function in this work and use iteratively reweighted least squares (IRLS)
to solve the resulting regression problem.
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3 A Kernel Regression Framework for Images

It follows an as-short-as-possible overview over bivariate kernel regression.

An ideal intensity image of a scene can be represented as a 2D function I(x)
that captures an intensity value at every continuous location x = (x, y).

If the same scene is captured by a photographic device, we end up with a set
of P intensity values Ii at discrete pixel locations xi = (xi, yi). This imaging
process, however, is not perfect and the resulting intensity samples are noisy:

Ii = I(xi) + εi, i = 1, 2, . . . , P (1)

where the εi’s are assumed to be identically distributed zero mean random
variables.

If we assume that the original image I is locally smooth to an order N , the
intensity value at a location x near a pixel xi can be expressed as a local N -
term Taylor expansion:

I(xi) ≈ I(x) +∇I(x)T ∆xi +
1
2

∆xT
i ∇2I(x)∆xi + . . . (2)

where ∆xi = xi − x.

If we restrict our discussion to orders not higher than N = 2, we can simplify
expression 2 as 2:

I(xi) = β0 + [β1, β2]T ∆xi + [β3, β4, β5]T vech
{

∆xi∆xT
i

}
(3)

where the half-vectorization operator vech(.) is defined as

vech

{[
a b
c d

]}
= [a, b, d]T (4)

If we compare the expressions 3 and 2, we observe that β0 is the intensity image
of interest and the rest of the βi (i = 1, 2, 3, 4, 5) are (scaled) first and second
partial derivatives of it:

β0 = I(x) (5)

β1 =
∂I(x)
∂x

(6)

β2 =
∂I(x)
∂y

(7)

β3 =
1
2
∂2I(x)
∂x2

(8)

β4 =
∂2I(x)
∂x∂y

(9)

2we are making use of the symmetry property of the Hessian matrix ∇2I(x) here
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β5 =
1
2
∂2I(x)
∂y2

(10)

The expression 3 can be further simplified and written as an inner product of
two vectors

I(xi) = dT
xi,xb (11)

where dxi,x =
[
1,∆xT

i , vech
{

∆xi∆xT
i

}T
]T

and b = [β0, β1, β2, β3, β4, β5]T .

We can compute the vector b for an arbitrary location x by minimizing the
following locally weighted energy in a least squares sense:

min
b

P∑
i=1

(dT
xi,xb− Ii)

2Khs(||∆xi||) (12)

where Khs
(||∆xi||) denotes the kernel function with the spatial smoothness

parameter hs. We will specify the used kernels bellow.

The expression 12 can be recast in matrix form:

b̂ = arg min
b
||
√

Kx (Dxb− I) ||2 (13)

where
I = [I1, I2, . . . , IP ]T (14)

denotes the vector with the pixel intensities3,

Kx = diag {Khs
(||∆x1||),Khs

(||∆x2||), . . . ,Khs
(||∆xP ||)} (15)

the vectors with the weights and

Dx = [dT
x1,x,d

T
x2,x, . . . ,d

T
xP ,x]T (16)

the matrix dependent on all the deltas (pixel location differences).

The vector b̂(x) can be found by solving the corresponding normal equations4

b̂(x) =
(
DT

xKxDx

)−1
DT

xKxI (17)

and the pixel intensity at the location x is given by

Î(x) = eT
1 b̂(x) (18)

We use Gaussian-based kernels of the form

Kh(s) = exp
(
−1

2
s2

h2

)
(19)

3
√

A of a square, diagonal matrix A of size n is defined as diag {√a11,
√
a22, . . . ,

√
ann}

4Note that the actual size of the system 17 is a lot smaller because of the local weighting
(the influence of pixels far from x is negligible).
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in this work.

The framework that we discussed so far already allows us to reconstruct, up-
sample and also denoise images. We just have to evaluate equations 17 and 18
at every pixel location at the desired resolution. Note that the P input pixels
do not have to lie on a regular grid (allows reconstruction). Edges, however, are
smoothed and are not well-preserved. An other problem with the current tech-
nique is that it is not very robust in case of outliers (as we will see in the next
Section 4). We will discuss non-linear extensions that address those problems
in the next two subsections.

3.1 Higher Order Bilateral Filters

One way of improving the performance of the regression technique on edges is
to make the kernels data-dependent. This leads to a so-called bilateral kernel:

Kbilateral(||xi − x||, Ii − I(x)) = Khs
(||xi − x||)Khd

(Ii − I(x)) (20)

This types of kernels not only depends on pixel locations, but also on the inten-
sity values at those locations. Bilateral kernels, therefore, adapt to local image
features such as edges and are able to preserve them better.

However, such a kernel is not directly applicable if we try to upsample or recon-
struct an image. The reason is that the intensity I(x) is not known for all pixel
locations x. This limitation can be overcome by computing an initial estimate
of I by using a simple interpolation scheme.

3.2 Linear vs. Robust Non-Linear Kernel Regression

Classic linear and also bilateral KR assumes the involved noise to be uniform. As
a consequence, even a single outlier in the data can have a significant influence
on the resulting image. To overcome this problem, a robust local estimator
can be used. We use a so called ψ-type M-estimator here, similar to [5]. The
idea is simple. Instead of minimizing the ordinary least squares criterion (see
Figure 1 left column), a different objective function is used that gives outliers
less weight (see Figure 1 right column). ψ-type estimators use differentiable
objective functions and therefore lead to efficient minimization procedures. We
employ Welsch’s objective function (see Figure 1 right column) in

min
b

P∑
i=1

ρ(dT
xi,xb− Ii)Khs(||∆xi||) (21)
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and use iteratively reweighted least squares (IRLS)5 to minimize the resulting
minimization problem:

bk = min
b

P∑
i=1

(dT
xi,xb− Ii)

2w(rk−1
i )Khs

(||∆xi||) (22)

where rk−1
i = dT

xi,xb
k−1 − Ii denotes the i-th residual at the k-1-th iteration.

We further initialize w(r0i ) to 1. There is a simple interpretation of the above
equation: give the points with a high residual (potential outlier) a small weight.
This iterative scheme seems to converge in a few steps.

5See http://research.microsoft.com/en-us/um/people/zhang/inria/publis/

tutorial-estim/node24.html for more information on ψ-type M-estimators and IRLS
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Figure 1: L2-norm vs. Welsch’s error norm
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4 Results

4.1 A First Example - 1D Step Function

In a first example, a 1D step function is sampled on a regular grid resulting in
a 100 data points with xi ∈ [0, 1.0] and yi ∈ {0.5, 1.0}. In a second step, noise
with variance 0.001 is added to the yi’s (see blue points in Figure 2 (a)). If we
add an outlier (point with yi = 1.5 to the data set, we get the plot in Figure 2
(b).

We see that the bilateral KR (green) shows the best performance on the strong
edge while smoothing the noise otherwise. However, if an outlier is added to
the data set, robust KR (blue) outperforms both, classic KR and bilateral KR
clearly. See table 1 for a summary of the resulting mean squared errors (MSE).

N
noisy data noisy data with outlier

(MSE ×10−2) (MSE ×10−2)
data 0.1272 1.1267

classic KR
0

0.3068 0.3684
bilateral KR 0.0083 1.0082
robust KR 0.0532 0.0534
classic KR

1
0.3070 0.3606

bilateral KR 0.0088 1.0087
robust KR 0.2722 0.2727
classic KR

2
0.2101 0.3136

bilateral KR 0.0172 1.0171
robust KR 0.1502 0.1504

Table 1: Step function: Summary of the mean squared errors (MSE)

4.2 Image Denoising - Performance Comparison on Dif-
ferent Types of Noise

Figures 3 and 4 summarize the results of the comparision of the performance of
classic, bilateral and robust KR in case of Gaussian noise. Bilateral KR seems
to give the best results. Robust KR gives slightly better results on edges than
the classic linear KR.

If salt and pepper noise is added to the image (see Figures 5 and 6), robust KR
clearly outperforms the bilateral and the classic linear KR. The bilateral KR
gives the worst result.
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Figure 2: Step function: Classic KR in red (N ∈ {0, 1, 2}, hs = 0.05), bilateral
KR in green (N ∈ {0, 1, 2}, hs = 0.05, hr = 0.1) and robust KR in blue (N ∈
{0, 1, 2}, hs = 0.05, hr = 0.1, number of iterations = 3).
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(a) (b)

(c) (d)

Figure 3: Denoising (Gaussian Noise): (a) and (b): Original 512 × 512 image
with pixel intensities in [0, 1.0], (c) and (d): Original image with additive noise
(mean: 0.0, variance: 0.01). Noise: 0.0992 (RMSE) and 20.0701 dB (SNR).
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Denoising (Gaussian Noise): (a) and (b): Linear KR (N = 0, window
size = 5, hs = 2.0). Error: 0.0364 (RMSE) and 28.779 dB (SNR), (c) and (d):
Bilateral KR (N = 0, window size = 5, hs = 2.0, hd = 0.4). Error: 0.03404
(RMSE) and 29.3603 dB (SNR), (e) and (f): Robust KR (N = 0, window size
= 5, hs = 2.0, hr = 0.4, number of iterations = 3). Error: 0.03516 (RMSE) and
29.079 dB (SNR).
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(a) (b)

(c) (d)

Figure 5: Denoising (Salt and Pepper): (a) and (b): Original 512 × 512 image
with pixel intensities in [0, 1.0], (c) and (d): Original image with salt and pepper
noise (approximately 5 % of the pixels set to black or white). Noise: 0.11958
(RMSE) and 18.4465 dB (SNR).
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Denoising (Salt and Pepper): (a) and (b): Linear KR (N = 0, window
size = 5, hs = 1.5). Error: 0.04 (RMSE) and 27.9588 dB (SNR), (c) and (d):
Bilateral KR (N = 0, window size = 5, hs = 1.5, hd = 0.4). Error: 0.048661
(RMSE) and 26.2564 dB (SNR), (e) and (f): Robust KR (N = 0, window size
= 5, hs = 1.5, hr = 0.4, number of iterations = 3). Error: 0.026678 (RMSE)
and 31.4769 dB (SNR).
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4.3 Image Reconstruction - From Irregular Samples to
Full Pictures

The KR framework can also be used to reconstruct images. If we remove 85
% of the pixels (randomly) and apply classic, linear and robust KR we get the
results summarized in Figures 7 and 8. All the KR variants do a decent job
in uniform areas. The bilateral KR seems to reconstruct edges better than the
other two. The edges, in case of the robust KR, are slightly sharper than the
ones we get with the classic linear KR.

(a) (b)

(c) (d)

Figure 7: Reconstruction: (a) and (b): Original 512 × 512 image with pixel
intensities in [0, 1.0], (c) and (d): Original image with 85 % of the pixels removed.
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Reconstruction: (a) and (b): Linear KR (N = 0, window size =
11, hs = 2.0). RMSE (comparison with ground truth): 0.043029 , (c) and
(d): Bilateral KR (N = 0, window size = 11, hs = 2.0, hd = 0.4). RMSE
(comparison with ground truth): 0.037698, (e) and (f): Robust KR (N = 0,
window size = 11, hs = 2.0, hr = 0.4, number of iterations = 5). RMSE
(comparison with ground truth): 0.041621.
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4.4 Image Up-Sampling - Enhance the Spatial Resolution
of an Image

Another application of the KR framework is image upsampling. A supperresolu-
tion example is summarized in Figures 9 and 10. An image is first down-sampled
by a factor 4 and than up-sampled again using the different KR variants. The
bilateral KR gives the best results. The results we get for the classic and the
robust KR look the same and their RMSEs are almost the same.

(a) (b)

(c) (d)

Figure 9: Upsampling: (a) and (b): Original 512× 512 image with pixel inten-
sities in [0, 1.0], (c) and (d): Down-sampled image (factor 4).
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Upsampling: (a) and (b): Linear KR (N = 0, window size = 11, hs =
0.5). RMSE (comparison with ground truth): 0.05663 , (c) and (d): Bilateral
KR (N = 0, window size = 11, hs = 0.5, hd = 0.01). RMSE (comparison with
ground truth): 0.037072, (e) and (f): Robust KR (N = 0, window size = 11,
hs = 0.5, hr = 0.6, number of iterations = 3). RMSE (comparison with ground
truth): 0.056606.
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4.5 Higher Order Bilateral Filters - A More Colorful Ex-
ample

The KR framework also allows higher order filtering. An example of higher
order bilateral filters applied to a color example is summarized in Figures 11
and 12. The image is first converted to the YCbCr space and the bilateral
KR with the same parameters is applied to each channel independently. If we
compare the overall results visually, than the oder zeros bilateral KR seems to
give a better result. However, if we zoom in the result we get with the second
order bilateral filter looks smoother than the one we get with the zero order
filter. The RMSE and the SNR for the second order filter result are also slightly
better than the ones we get for the zero order-filtered image.

4.6 Derivatives - A By-Product

The framework also allows to directly compute partial derivatives of an image.
In case of a degree 1 approximation (N = 1), we can optionally compute the
first order derivatives. The degree 2 approximation (N = 2) allows us to directly
compute first and second order partial derivatives as can be seen in Figures 13
and 14.

5 Conclusion

We saw a framework based on kernel regression that allows image denoising,
upsampling and reconstruction. Bilateral KR seems to give the best results if
no outliers (salt and pepper noise) is involved. In case of outliers, robust non-
linear KR seems to clearly outperform bilateral KR. This investigation suggests
that a combination of a bilateral kernel and a robust estimator is used.

References

[1] N. K. Bose and Nilesh A. Ahuja. Superresolution and noise filtering using
moving least squares. In IEEE Transactions on Image Processing 2006.
IEEE, 2006.

[2] C. K. Chu, I. K. Glad, F. Godtliebsen, and J. S. Marron. Edge-preserving
smoothers for image processing. In Journal of the American Statistical As-
sociation. American Statistical Association, 1998.

[3] Raanan Fattal. Image upsampling via imposed edge statistics. In Proceedings
of SIGGRAPH 2007. ACM SIGGRAPH, 2009.

19



(a) (b)

(c) (d)

Figure 11: Denoising (Gaussian Noise) on Color Image: (a) and (b): Original
512 × 512 image with pixel intensities in [0, 1.0], (c) and (d): Original image
with additive noise (mean: 0.0, variance: 0.01). Noise: 0.097639 (RMSE) and
20.2076 dB (SNR).
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(a) (b)

(c) (d)

Figure 12: Denoising (Gaussian Noise) on Color Image: (a) and (b): Bilateral
KR (N = 0, window size = 11, hs = 100.0, hd = 0.1). Error: 0.039308 (RMSE)
and 28.1104 dB (SNR), (c) and (d): Bilateral KR (N = 2, window size = 11,
hs = 100.0, hd = 0.1). Error: 0.038411 (RMSE) and 28.311 dB (SNR).
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Figure 13: Derivatives (Salt and Pepper): (a) and (b): Original 512×512 image
with pixel intensities in [0, 1.0], (c) and (d): Original image with salt and pepper
noise (approximately 5 % of the pixels set to black or white).
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β0 = I(x) β1 = ∂I(x)
∂x

β2 = ∂I(x)
∂y β3 = 1

2
∂2I(x)

∂x2

β4 = ∂2I(x)
∂x∂y β5 = 1

2
∂2I(x)

∂y2

Figure 14: Derivatives: Robust KR with N = 2. We get partial derivatives of
an image as an optional by-product.
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