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Figure 1. Successful Audio-Animatronic
R©

figures often require many costly physical fabrica-
tion and assembly revisions.Our virtual production workflow, however, takes the CAD model
data (1) and computes hyperelastic material simulations driven from motor activations to dig-
itally preview Audio-Animatronic

R©
pose meshes (2). With these meshes, we train our KSNN

solver to reconstruct in real-time with accuracy to within 834µm (3). Our Learning Active
Learning GEN-LAL scheme adaptively learns to select pose inputs for accelerated training
convergence. With training costs halved and interactive animation design (4), the final assem-
bly (5) can be completed more efficiently with a higher quality of experience for guests (6).
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Abstract

We present a practical neural computational approach for interactive design of Audio-
Animatronic

R©
facial performances. An offline quasi-static reference simulation, driven by a

coupled mechanical assembly, accurately predicts hyperelastic skin deformations. To achieve
interactive digital pose design, we train a shallow, fully connected neural network (KSNN) on
input motor activations to solve the simulated mesh vertex positions. Our fully automatic syn-
thetic training algorithm enables a first-of-its-kind learning active learning framework (GEN-
LAL) for generative modeling of facial pose simulations. With adaptive selection, we signif-
icantly reduce training time to within half that of the unmodified training approach for each
new Audio-Animatronic

R©
figure.

1. Introduction

Imagineers Lee Adams, Roger Broggie, Leota Toombs, and Wathel Rogers are cred-
ited with developing the first Audio-Animatronics

R©
toward Walt Disney’s vision to

inspire and delight guests by making inanimate things move on cue and come to life,
hour after hour and show after show. From the first humanoid figure “Little Man”
in 1951 [Gluck 2013], and the “A1” birds developed for the Enchanted Tiki Room in
1962, to the recent “A1000” figures found in Star Wars: Galaxy’s Edge [Blitz 2019],
Nishio et al.’s “Geminoids”TM[2010], and Garner Holt Productions’ expressive “Lin-
coln” [Holt 2017], the goal of delivering autonomous physical characters out of the
uncanny valley [Mori 1970] is a core creative and scientific endeavor increasingly
necessitating accurate interactive performance-design tools.

The design of today’s Audio-Animatronic
R©

figures [Blitz 2019], using trial and
error on mutually dependent physical motor configurations and coupled skin material
fabrication iterations, can lead to large costs or yield unsatisfactory uncanny robotic
performances. This work addresses the facial performance design task by simulating
the physical skin material motions resulting from rotational motor activations and
yields an interactive design workflow with high accuracy to the actual real world
Audio-Animatronic.

R©

We form a first-of-a-kind production system for interactive facial performance
design of stylized, hyper-realistic, and humanoid figures. Our contributions across
the major virtual prototyping system components of a simulator, KSNN and GEN-
LAL, are as follows:
• Coupled assembly-skin solver: An accurate offline simulator for expressive skin

material shapes uniquely coupled with facial motor actuators is developed. Our
novel quasi-static, coupled solver, accurately predicting states of assembly and flex-
ible skin components is introduced in Section 4.

• Neural assembly-skin solver: A shallow, fully connected neural network, KSNN,
synthetically trained with the offline simulator for interactive pose-prediction en-
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abling our interactive design workflow is proposed in Section 5. As a somewhat
less challenging process, our solver is potentially also applicable to high-quality
digital-only facial character animation, for example, in video games or movie vir-
tual production.

• Adaptive training: A new generative Learning Active Learning framework, GEN-
LAL, for skin-pose predictions with equivalent speed and accuracy to KSNN using
only half the number of training samples is detailed in Section 6.

We follow with related work in Section 2. An overview of the interactive Audio-
Animatronic

R©
performance design system is covered in Section 3 before detailing

each of the system subtopics. The article ends with limitations of the methods (Sec-
tion 7), concluding remarks, and future work (Section 8).

2. Related Work

Fabrication-oriented design. There is a body of work on the design and fabrication
of mechanical assemblies [Zhu et al. 2012; Ceylan et al. 2013; Coros et al. 2013;
Thomaszewski et al. 2014; Bächer et al. 2015], compliant structures [Megaro et al.
2017], deformable objects made of rubber-like [Skouras et al. 2013] or silicone ma-
terials [Zehnder et al. 2017], or robotic characters [Megaro et al. 2015; Bern et al.
2017; Geilinger et al. 2018]. Closest to our work is the physical cloning process
proposed by Bickel et al. [2012]. However, unlike these works, our focus is on the
accurate simulation and animation of an existing Audio-Animatronic’s

R©
head. Rather

than estimating the actuator motions for more than 100 target facial-expression poses
offline, our method, rather, interactively predicts the simulated physical facial-mesh
shapes from motor-assembly states for performance pre-visualization. In our simula-
tions, we couple the silicone skin to a mechanical assembly, modeling the traditional
actuation of a Audio-Animatronic’s

R©
facial expressions. While Bickel et al. [2012]

focus on accurate cloned surface shapes and do not provide performance statistics of
their forward-simulation generating-target surfaces offline, our neural solver operates
in real-time (Section 6.3).

Facial-performance simulation. A related physical facial-performance simulation
work can be found in Phace [Ichim et al. 2017], which simulates the physical muscle
and skin-tissue shape of a human face under internal and external forces, but is not
purposed for Audio-Animatronic

R©
actuated skin material and is not real-time. Bar-

rielle and Stoiber [2019] compute a real-time performance-driven inertial and sticky
lips simulation, but deal with motion input from facial landmarks of an actor rather
than rotational motors of an Audio-Animatronic.

R©
Instead of accelerating physical

face simulation, Bailey et al. [2018] provide a data-driven process for fast approxima-
tion of rigged virtual-character animations by combining linear skinning and learned
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local non-linear deformations. Their non-linear per-bone deformation neural net-
works are trained with a random selection of poses within a local range of motion
of each bone, whereas our performance-design method trains a base-pose-relative fa-
cial network by adaptively generating new training poses through Active Learning,
reducing training times by half.

Active Learning. Active Learning (AL) encompasses situations where we are par-
ticularly concerned about the selection of batches of training instances sequentially.1

The motivation behind this setup is to either accelerate training convergence or to ac-
tively compensate for class imbalance. Successful applications include experimental
drug design [Warmuth et al. 2003] (where getting an example amounts to carrying out
a complex chemical experiment), object recognition [Sivaraman and Trivedi 2014],
and text classification [Tong and Koller 2002].

However, most research in AL focuses on classification problems. Thus, the most
well-known heuristics for variable selection (uncertainty sampling, expected largest
model change, query by committee; see [Settles 2009] for more details) require prob-
ability estimates over a discrete set of classes. Nonetheless, there are AL algorithms
that deal with variable selection with continuous output [Krause et al. 2008] that de-
rive in the well-known uncertainty sampling heuristics (e.g., aim for uncertainty and
novelty). Krause et al. [2008], however, make strong assumptions that might be spe-
cific for sensor temperature data (e.g., Gaussian process modeling), and the resulting
algorithm is directly derived from those (e.g., entropy functions are submodular).

There is also work that tries to reduce AL problems to outlier-detection type of al-
gorithms by deriving an upper bound on the generalization error [Sener and Savarese
2018]. While outlier-detection algorithms are efficient and simple to implement, they
also rely on some mathematical assumptions of the model generating the predictions.
For example, Sener and Savarese [2018] proves the bound for CNNs function char-
acteristics applied to classification. In contrast, our work is the first of it’s kind to ap-
ply active-learning concepts to the accelerated training of activation-based animation-
solving in the area of generative modeling.

3. Audio-Animatronic
R©

Performance Design

Traditional approaches to Audio-Animatronic
R©

design and longevity testing are time-
consuming and expensive. Rod puppets provide engineers with real-world testbeds,
but these require the design, fabrication, and assembly of a puppet’s mechanical el-
ements as well as the formulation, modeling, and pouring of a silicone skin. Once a
puppet has been built, a review of the design can be conducted, the outcome of which
informs changes to the next iteration.

1This is sometimes referred to as batch mode Active Learning.
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In the simulator (see Section 4), we developed a physically accurate software tool
capable of recreating this workflow in the digital realm, greatly reducing iteration
time and cost. Entire head mechanisms can be designed and assembled, and different
formulations of skin can be quickly tooled and modeled, all in a virtual space. Cou-
pling finite-element (FE) degrees of freedom to the states of assembly components,
we are then able to compute how a silicone skin will stretch, bend, and fold across the
assembly, based on the positioning of virtual actuators.

Due to the high degree of accuracy in these solves, an individual mesh-pose simu-
lation on a modern multi-threaded CPU can take between five and 30 minutes of com-
pute time to converge. While this represents a dramatic speed-up from the traditional
physical Audio-Animatronic

R©
design approach, downstream stages of the production

pipeline, including animation, require real-time interactivity.
Learned models offer the potential to augment this workflow with trained neural

networks (see Figure 1), capable of delivering accurate results without sacrificing
interactivity (see Section 5).

The workflow begins in computer-aided design software (Figure 1.1). The design
is iterated over using the simulator to import the mechanisms and simulate the re-
sulting deformations of the silicone skin. Upon completion of the design, a physical
Audio-Animatronic

R©
head is assembled (Figure 1.5), and the custom silicone skin is

then formed and mounted to the head (Figure 1.6). Meanwhile, the simulator com-
putes a set of simulated poses offline (Figure 1.2) which, in turn, feed our learned
prediction models for fast approximation (Figure 1.3; see supplementary material and
Figure 6 for detailed error comparisons). With the learned KSNN model, we are able
to perform interactive pose editing with an artist-friendly digital content-creation-
package plugin, feeding into the fully realized Audio-Animatronic

R©
(Figure 1.6, see

the accompanying supplementary video).

4. Audio-Animatronic
R©

Skin Simulator

To deform synthetic skin into an expressive set of facial expressions, the skin is com-
monly attached to a mechanism driven by a set of rotational motors. To make adaptive
learning a tractable endeavor, we devised a simulator that can accurately predict skin
deformations under a particular configuration of motors.

For assembly simulation, we rely on a constrained optimization-based formula-
tion [Coros et al. 2013]:

c(s) = 0,

where the state vector s ∈ R6m represents the rotational and translational degrees of
freedom (DoFs) of them assembly components. To formulate constraints that restrict
the relative motion between pairs of components, we define frames that remain con-
stant in local component coordinates. We then transform them to global coordinates
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by applying the rigid transformations encoded in the state vector, formulating a set of
constraints between centers and pairs of axes. For example, for a hinge that connects
two components, the two frame centers have to coincide in global coordinates, and
the transformed z-axis of the frame of the first component has to remain orthogonal
to the transformed y- and z-axes of the frame of the second component, assuming the
hinge axis to equal the z-axis. Among joints of varying DoFs, motors take on a special
role. We can think of them as hinges, where the relative angle between components
is prescribed. In simulations, we therefore step rotational motors, then solve the set
of non-linear equations for the component states that fulfill all joint constraints.

Since Audio-Animatronic
R©

skin is typically made of silicone or a related material,
we rely on a hyper-elastic material for its simulation. The skin is rigidly attached to
skull-like shells in some regions. Moreover, to translate assembly motion into skin
deformations, the skin is attached to the assembly at a discrete set of locations. For
instance, the mouth-corner deformation is driven by several attachment points to the
assembly.

To prepare for simulations, we first generate a conformal, volumetric mesh. For
the deformed configuration, we differentiate between nodes that are rigidly moving
with assembly components, and hence are expressed with a rigid-body transformation
extracted from the state vector s, and nodes whose deformation is due to the elastic
response of the skin. To solve the assembly state and the skin nodes x ∈ R3n that can
freely move, we formulate and solve a quasi-static, constrained problem,

min
s,x

∫
V

Ψ(s,x) dV s.t. c(s) = 0,

where Ψ is the strain-energy density of the hyper-elastic material [Sifakis and Barbic
2012]. Note that, in this coupled formulation, the assembly can have passive DoFs
that are attached to and regularized by the deforming skin.

Holding partial degrees of freedom fixed with further fixed displacements, the
skin-strain energy is modeled in discrete elements, which we integrate according to
the density of the hyperelastic material over the volume. We have experimented with
an increasing level of complexity when it comes to the order of elements and model
complexity of the hyper-elastic material. The use of linear elements is clearly in-
sufficient to achieve the desired precision. For simulations of the silicone material,
we observe best performance when using a Mooney-Rivlin or Yeoh material model
[Sifakis and Barbic 2012]. For minimization, we use sequential-quadratic program-
ming (SQP) [Nocedal and Wright 2006]. Because the skin is attached to rigid shells,
and at a sufficiently dense set of locations to the underlying mechanism, quasi-static
simulations are sufficient.
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5. KSNN: Learned Interactive Mesh Solving

With a potentially large number of motor actuators (ranging from nine to 40 in facial
motor assemblies) and non-linear physically dense mesh configurations, we found
the application of simple fitting schemes were lacking in their physical accuracy and
required corrective elements to bring them back into an acceptable range. Further,
linear regression or principle component analysis (PCA) were also considerably in-
sufficient. Our goal to be computationally fast with high accuracy led us to veer away
from ensemble regression schemes [Fanelli et al. 2013; Kazemi and Sullivan 2014], as
those perform with lower accuracy for our particular domain. Given the input motor
actuators forming an unstructured collection of independent linear rotations (except

Figure 2. Two deep generative architectures compared on the humanoid figure (left to right)
with our ground truth finite-element simulation, our KSNN architecture, and our GAN result
on two poses (above and below). We generate vertex coordinates on each channel indepen-
dently. The GAN uses the KSNN architecture as the generator. The discriminator consists
of layered convolutions on groups of adjacent vertices (red is absolute vertex distance from
simulated ground truth).
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for single outlier of mechanically coupled motors) and the observed behavior of the
coupled quasi-static simulator, we aligned upon a shallow, fully connected (KSNN)
neural-network architecture. In our shallow network, the input-actuator parameter
space is relatively small (compared to image-classification problems, for example),
and we find a small number of hidden-layer neurons to yield sufficient prediction
accuracy (See Figure 6). Indeed, in deeper multi-layer network tests, memory consid-
erations for GPU solving were a factor, exceeding resources with up to 100k hidden
neurons on the humanoid Audio-Animatronic

R©
mesh. In both cases, a large number

of hidden-layer neurons exhibited overfitting. We also tried more recent generative
architectures such as a Generative Adversarial Network (GAN). We display a compar-
ison of KSNN (a fully-connected architecture) to GAN (the architecture uses the same
generator as KSNN and the same discriminator as the regressor in Section 6.2) in Fig-
ure 2. While there might be some trade-off in fidelity with the GAN architecture, the
time to train these networks for thousands of meshes did not make it appealing for our
application.

5.1. Actuator to Mesh Pose Generation

Our KSNN net predicts mesh-vertex components (x, y, z) independently. Output val-
ues are trained relative to a regular base-mesh pose for each Audio-Animatronic

R©

figure. We populate the actuator configurations by independently assigning each ac-
tuator a random value within an actuator-specific min-max range (unless there are
pre-specified group constraints).

We generate solved mesh poses from actuator values with just three fully con-
nected layers: an input layer, a single tanh-activated hidden layer, and a linear-activated
output layer.

The input layer consists of N -actuator inputs, the values of which are normalized
from their rotational values in degrees, to a range of [0, 1]. The size of the hidden
layer is tuned to each dataset with best results generally achieved using a quantity of
neurons equal to one to two times the number of input neurons (i.e., one to two times
the number of actuators). For the humanoid figure, which has 13 actuators and thus
13 input neurons, a hidden layer with 13 neurons yielded the best results. For the
Na’vi figure, which has 11 actuators, 22 neurons in the hidden layer yielded the best
results. The size of the output layer is equal to the number of vertices in the solved
mesh. Three separate networks are trained independently for the x, y, and z offsets.

Training consisted of just over 5,000 simulated poses and validated on an addi-
tional 20% of unseen poses. The KSNN network was trained using an Adam opti-
mizer with a mean-squared error-loss function, saving only the best checkpoint for
each of the three networks.
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6. Accelerated Training with Adaptive Learning

Even if the KSNN generator produces high-fidelity results as shown in Section 5, the
effort it takes to produce an actuator-to-mesh dataset with the physics-based model
can be prohibitively expensive in terms of simulator time.

For example, the set of possible configurations grows exponentially with the num-
ber of actuators (e.g., at least 2|A| whereA is the actuator set). Also consider that there
is no straightforward approach to select which actuator configurations to simulate, so
the physics-based model might often hit unfeasible configurations.

It is indeed feasible to generate a useful set of poses to fit our learned models for an
assembly such as the one in Figure 6 (under two days on four CPUS for 1560 poses
using our physics-based model). However, the neural network might not provide
a comprehensive representation of the physical models unless we identify the most
difficult poses to generate, or the ones that are uncommon (to avoid an ‘over-fitting’
scenario).

Hence, the question is how can we guide this exploration to generate an actuator-
to-mesh dataset that gives us high-fidelity results in an efficient manner.

6.1. Data-driven Active Learning

Motivated by the limitations outlined in Section 2 regarding the classic setup for active
learning, we propose a method for actively selecting actuator-mesh pairs that makes
the training process converge faster and more robustly.

Our approach is inspired by recent work in the meta-AL literature. The motivation
behind meta-AL is to learn rules that do not strongly depend on intuition or ad-hoc
rules (e.g., uncertainty-sampling criteria) or mathematical assumptions [Sener and
Savarese 2018; Krause et al. 2008]. For example, it has been shown that uncertainty-
sampling (by far the most popular approach) can behave arbitrarily bad when there
is class imbalance in the initial training set [Konyushkova et al. 2017; Pelleg and
Moore 2005]. Popular meta-AL approaches include [Hsu and Lin 2015; Baram et al.
2004], where a multi-armed bandit algorithm is used in conjunction with different AL
sampling algorithms. Note that such an approach could only improve the results of
our proposed method as it may be used in combination with other samplers. However,
we leave those experiments for subsequent work as the main focus here is the novel
application of LAL [Konyushkova et al. 2017] to generative modeling.

6.2. GEN-LAL

LAL (Learning Active Learning) [Konyushkova et al. 2017] is a framework that sim-
ulates runs of an AL method as a subroutine2 to produce data that will help us select
the incoming observations (see Figure 3). This simulation data is model state (plus

2Without loss of generality, the AL subroutine uses random sampling.
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Figure 3. GEN-LAL (Learning Active Learning) sampling scheme. We sequentially augment
the training set from a set of plausible actuator configurations. We learn the selection rule from
a mapping of model-state features (predicted mesh and corresponding actuators) to yield a
reduction in generalization error (see Section 6).

input observation data, e.g., actuator values) mapped to a reduction in generalization
error that is computed in the test set. Once this simulated dataset is produced,3 we
train a regressor that will learn the batch selection rule (e.g., rank the observations
by decreasing reduction in generalization error). Recall, generalization error is the
measure of how accurately the model is able to predict unseen samples.

The LAL technique was initially proposed to select training pairs in the classifi-
cation context. However we propose here, that as long as the model state features (in
our case, the mesh that the generator yields at any point of training) can be reduced to
a scalar (delta in generalization error), the framework can be successfully applied to
the generation of high-dimensional observations.

For GEN-LAL, the regressor is a CNN (convolutional neural network) that re-
duces the mesh to a delta in generalization error. For this CNN (first layer is the x, y, z
channels), we used filters of varying depth (3→ 9→ 18→ 27→ 18→ 9→ 3→ 1)

and size (32 → 16 → 16 → 8 → 8 → 4 → 4 → 4) while keeping a fixed stride
(e.g., 2).

Additionally, we used a 0.5 dropout regularization to train this regressor and batch
normalization in the first layer to control variance.

Our contribution is the novel application of learning active learning (LAL) to the
generation of unstructured meshes. The exact procedure (Section 6.2) is split into
a main routine (Algorithm 1: GEN-LAL) and a sampling sub-routine (Algorithm 2:

3There are a few ways to produce the simulated data as outlined in [Konyushkova et al. 2017]: the
simulated pairs can be independent, or we can induce a dependence which is the approach we take in
Section 6.2
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SIMULATED RANDOM-AL). The experiment setup and results for assessing this
method can be found in Section 6.3.

Algorithm 1: GEN-LAL Independent
Data: {τ0, . . . , τN} (simulation configurations).
g (mesh Generator). f (test error delta regressor).
B sample batch size. TR (current train set),
P (observation pool), TT (test set)
Result: {x1, . . . , xB} sample batch of proposed actuator configurations
D ← TR D′ ← TT;
SPLIT← random partitioning function;
φ← ∅; η ← ∅; δ ← ∅;
for τ ← {τ0, . . . , τN} do

(φτ , ητ , δτ )← SIMULATED RANDOM-AL
(
D,D′,g,SPLIT, τ

)
Append

(φτ , ητ , δτ ) to (φ, η, δ) respectively ;
end
Train regressor f on (φ, η)→ δ;
XB ← arg maxS⊂P

∑
x∈S f(x);

Return XB

Algorithm 2: Simulated Random-AL
Data: M (nbr. of samples). SPLIT (defines init-set and simulated pool). D (train

set). D′ (test set). g (mesh generator model)
Result: (φ, η) (model state and actuator features) and δ (reduction in generalization

error) pairs
Lτ ,Uτ ← SPLIT(D, τ);
Train generator gτ instance on Lτ ;
`τ ← `0 (test set loss estimate) ;
Compute φ0 (model-state parameters) and append to φ ;
Append η0 (actuators corresponding to Lτ ) to η ;
L0←Lτ ;
for t← 1 to M do

Select xt ∈ Uτ at random;
Lt ←Lt−1 ∪ {x};
Append xt to η;
Train generator gτ on Lt;
Compute φt (model-state parameters) and append to φ ;
Append (`τ − `t) to δ;
`τ ← `t (test set loss estimate) ;

end
Return (φ, η, δ)
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6.3. Experiments

Interactive editing of motor activations with real-time mesh-pose preview within a
digital content-creation package (Figure 1.4) is high speed and fluid. For example,
our single-thread version running on an Intel Xeon Skylake 3.2GHz CPU computes
on average 1559.45µs for the humanoid figure, with 1388.44µs for the hyper-realistic
figure, and 1375.81µs for the stylized Audio-Animatronic,

R©
which has the most dense

mesh with over 100k vertices solved in real time.
For our validations, we generated 5,290 actuator-to-mesh values for the humanoid

head assembly (hyper-realistic figure: 5,520, stylized figure: 4,108). The actuator
configurations were selected by setting each actuator to its boundary values. From all
the possible controller configurations, we select them uniformly at random (choose
one index independently at a time) as long as they respect the group constraints. We
also remove duplicates, if any.

Using the experiment setting described above, we develop and compare GEN-
LAL to a random (sample uniformly at random for each new batch) and a greedy
fully informed (greedily select the batch that achieves the lowest error on the test set)
baseline. Figures 4(a) and 4(b) show the L1-error of these methods as a colormap
overlay upon poses that were unseen during training.

(a) (b)

Figure 4. Adaptive learning and partially generated poses ((a) and (b) are just different se-
lected poses for demonstration) at 30/60/90 (left to right) percent of total training data. From
top to bottom, the sampling methods are GEN-LAL, greedy fully informed, and random.
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Figure 5. Plots of RMSE corresponding to Figure 4 on the test set and L1 parameter
loss-convergence behaviors for the random, greedy fully Informed and GEN-LAL adaptive-
learning sampling methods. Top: RSME; bottom: L1 generator loss (also translucent in above
plot).

We observe that GEN-LAL can achieve convergence in about half the iterations
required by either the Random or Fully Informed baselines (Figure 5). Moreover, we
see that for regions of the face that require higher fidelity (e.g., corners of the lip and
eye contours) the GEN-LAL gets much closer to the ground truth solution.

7. Limitations

Error is visualized in terms of surface-distance error (Figures 1 and 6) and L1-error
vertex component distance error (Figures 2 and 4). The training loss function is a
vertex-component distance, but may be more sophisticated. For example, Hausdorff
distance or Earth Mover distance may yield a more efficient training-to-convergence
process, but they may be more costly to compute, hence more time consuming to
train.
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Figure 6. Learned Audio-Animatronic
R©

pose-modeling results on a hyper-realistc creature,
plus stylized and realistic humanoid figures. Upper rows: pairs of offline simulated ground
truth and fully connected neural network (KSNN) solved-pose results; lower rows: corre-
sponding surface-distance accuracy visualization between upper pairs, with green colors for
low error, yellow/red for negative difference, and cyan/blue for positive difference. See sup-
plementary material for more detail and further samples.

If the mechanical assemblies employed vector-motion activations, it is possible
that the KSNN structure would need to combine learning of x, y, z components to-
gether, resulting in longer training and solver times or less accuracy. For full face-and-
body Audio-Animatronics reg a structured combination of solvers would potentially
yield the best results.

Scalability of the work for very large datasets is limited by available on-board
GPU memory. To utilize GPU-acceleration in the deep-learning pipeline, one or more
of the following may need to be constrained:

• The quantity of simulated poses for training.
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• The density of the mesh, which correlates to the number of fully-connected
output neurons.

• The number of input (actuator) and hidden neurons.

The GEN-LAL approach instantiates a new simulation per sample, which incurs a
computation and memory overhead in the current implementation. Variants may share
initialization to make more efficient use of hardware resources. We must mention,
however, that the implementation of GEN-LAL was quite taxing for GPU memory
even though we used Tesla P100 hardware.4 We imagine that running this model on
larger meshes (the results of Figure 4 represent a mesh with 50 thousand vertices)
would require further hardware and code optimization.

8. Conclusion

We provide a method for interactive Audio-Animatronic
R©

performance design that
learns to model an accurate, offline physical skin simulator adaptively for rapid incre-
mental training and real-time solving. The result is a practical workflow for designers
to digitally preview attractions without costly physical-hardware iteration cycles. The
live-designed performances finally are transferred to the physical stage without loss
of accuracy or engagement for guests.

In the future, we would like to investigate how to generalize the solver with a
broad training set or method that can predict actuated mesh poses for any designed
motor assemblies and skin configurations without training tied to each character.

While our industrial application focuses upon Audio-Animatronics,
R©

the
approaches taken may suit optimization of other complex animation deformation
schemes driven by low-dimensional inputs, such as high-end feature-film production
and video game animation systems.
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Röthlin, Bernhard Thomaszewski, and Hongyi Xu.

References
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