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Simulation of airplane frame, directly on CAD representation. 

Inverse shape design under gravity: let there be light!

…unstable spin

…spins stably

Asymmetric wheel…

Optimized wheel…

Fig. 1. We present a differentiable deformable solid simulation (left) that enables shape optimization on CAD representations (middle, right) while preserving a
model’s manufacturability, function, and appearance. We demonstrate our optimization on a range of objectives including co-optimization of strength-to-weight
ratio and mass distribution (middle), and rest shape optimization (right).

We propose a novel generic shape optimization method for CAD models
based on the eXtended Finite Element Method (XFEM). Our method works
directly on the intersection between the model and a regular simulation grid,
without the need to mesh or remesh, thus removing a bottleneck of classical
shape optimization strategies. This is made possible by a novel hierarchical
integration scheme that accurately integrates finite element quantities with
sub-element precision. For optimization, we efficiently compute analytical
shape derivatives of the entire framework, from model intersection to in-
tegration rule generation and XFEM simulation. Moreover, we describe a
differentiable projection of shape parameters onto a constraint manifold
spanned by user-specified shape preservation, consistency, and manufactura-
bility constraints. We demonstrate the utility of our approach by optimizing
mass distribution, strength-to-weight ratio, and inverse elastic shape design
objectives directly on parameterized 3D CAD models.
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1 INTRODUCTION
Ever since Ivan Sutherland laid the foundation of modern Computer-
Aided Design (CAD) with his revolutionary computer program
Sketchpad [Sutherland 1963], CAD systems have become a core
pillar of innovation. In combination with simulation, they have em-
powered us to design architectural masterpieces like the Sidney
Opera House, or fuel-efficient airplanes like the Airbus A350 XWB
or the Boeing 787-9 Dreamliner. Yet, it remains onerous to treat
CAD model parameters as design variables in optimizations.
In modern CAD systems, a boundary representation (B-rep),

predominantly composed of Non-Uniform Rational Basis Spline
(NURBS) patches, is used to describe solid models. The success of
B-rep is attributed to the many desirable properties of NURBS, en-
abling the precise representation of analytical and free-form shapes,
and modeling operations such as extrusion, chamfering, or blend-
ing. While advantageous for manual design, strength-to-weight or
rest shape optimization require the solution of a Partial Differential
Equation (PDE) on the enclosed volume.
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Although progress has been made in isogeometric analysis, where
PDEs are solved on volumetric NURBS representations, the genera-
tion of volumetric NURBS for general B-rep input is highly challeng-
ing [Cottrell et al. 2009]. Hence, it is still the de facto standard to
solve PDEs on a volumetric mesh representation. However, because
shape optimization requires a differentiable simulator, and even
moderate changes to design variables demand repeated conversion
and remeshing, the use of CAD in combination with optimization
is limited.

In this paper, we propose a novel differentiable deformable solid
simulation that enables generic shape optimization directly on CAD
models. To dodge remeshing discontinuities and avoid a depen-
dence of shape derivatives on the simulation mesh, we intersect the
CAD model with a regular hexahedral grid that we keep constant
throughout optimizations. While the resulting simulation mesh is
not conformal, we enrich elements that are cut by the B-rep, repre-
senting the solid-void boundary explicitly. To accurately integrate
over the subvolumes of the resulting extended finite elements, we
adopt and extend a recent quadrature scheme [Müller et al. 2013].
CAD models are often tailored for fabrication using a particu-

lar manufacturing technology. For example, if we target casting or
injection molding, a model has to be undercut-free and observe a
minimal draft angle constraint. To preserve a model’s manufactura-
bility, function, and appearance during optimization, we therefore
analyze properties of neighboring NURBS patches, and provide the
user with the option of defining constraints on the mapping of
high-level shape to low-level patch parameters.
We demonstrate the efficacy, generality, and utility of our tech-

nique by minimizing common strength-to-weight, rest shape, and
mass distribution objectives on a set of complex CAD models with
a plethora of thin and sharp features. With a set of validation ex-
periments, we further show that our XFEM simulation results are
in excellent agreement with simulations performed on a conformal
mesh with standard FEM, for both linear elasticity and hyperelastic-
ity problems.
Succinctly, we propose and contribute

• a differentiable simulator that enables generic shape optimiza-
tion on CAD models.

• an extension of a hierarchical quadrature scheme [Müller
et al. 2013] to accurately and reliably integrate subelement
detail of varying shape and size.

• a change of basis for enriched elements, making it straight-
forward to turn a standard FEM into an efficient XFEM im-
plementation.

• a differentiable projection of shape parameters onto a set
of shape, function, and manufacturability constraints, and
efficient shape derivatives of our hierarchical quadrature.

2 RELATED WORK
Fabrication-Aware Shape Optimization. Recent years have wit-

nessed an increasing interest in fabrication-aware shape optimiza-
tion that targets the design of shapes with desired properties. Exam-
ples include mass distribution optimization to make a model stably
stand [Prévost et al. 2013], spin [Bächer et al. 2014], or float [Wang
and Whiting 2016]; sound spectra optimization with applications in

metallophone design [Bharaj et al. 2015]; optimizing the strength-
to-weight ratio of printed parts [Stava et al. 2012; Zhou et al. 2016];
or rest shape optimization for nonlinear elastic objects [Chen et al.
2014; Skouras et al. 2012]. Although we share the goal of devising a
generic shape optimization with Musialski et al. [2016], our focus is
on the optimization of CAD models instead of meshed representa-
tions.

Analyzing CAD Models. The predominant approach for analyzing
CAD models is to first volumetrically mesh the enclosed domain,
then discretize PDEs over finite elements [Hu et al. 2018; Schneider
et al. 2018]. However, whenever a CADmodel parameter is adjusted,
the conforming representation has to be refined and remeshed. In ad-
dition to computational overhead, changes in the discretization can
also lead to popping artifacts and non-smooth objective functions
during shape optimization. In the last decade, the field of IsoGe-
ometric Analysis (IGA) has arisen. IGA attempts to unify design
and analysis by augmenting the 2D surface NURBS with 3D solid
NURBS elements. This tight integration between CAD and analysis
offers tremendous advantages in shape optimization, but it comes
with the challenge of identifying a parameterization of the volumet-
ric domain from its boundary, currently an active area of research
[Daxini and Prajapati 2017; Hsu et al. 2015]. Mesh-free simulation
methods [Martin et al. 2010; Müller et al. 2004; Nayroles et al. 1992]
generate approximations of the deformation field from only a set of
points, but these methods face the challenge that accurately repre-
senting complex features requires an adequate sampling of a model’s
boundary. Similar to traditional mesh-based approaches, this raises
sampling and segmentation issues [Faure et al. 2011]. Trying to
maintain the advantages of mesh-free methods while addressing
these shortcomings, the enrichment concept of the XFEM enables
the introduction of additional degrees of freedom (DOFs) for ele-
ments cut by the boundary. This enables reduction of the complexity
of the geometric meshing domain [Fries and Belytschko 2010]. The
method was initially developed by Belytschko and Black [1999]
for modeling crack growth. In graphics, the method has received
attention for simulating the cutting of shells and solids [Jeřábková
and Kuhlen 2009; Kaufmann et al. 2009; Koschier et al. 2017].

In this work, our strategy is to build on the XFEMmethod in order
to avoid complex meshing and remeshing operations. In doing so,
we face the technical challenge of accurately integrating on domains
delimited by NURBS surfaces. Safardi et al. [2015; 2016] suggested to
utilize NURBS to augment the finite element approximation space
and minimize geometric errors associated with the discretization
of a complex domain in combination with the generalized finite
element method. Haasemann et al. [2011] developed a quadratic
finite element formulation based on the XFEM and NURBS, which
was later extended to higher order approximations [Legrain 2013].
In these works, it is required that the boundary of a model cuts an el-
ement edge of the nonconforming mesh at most once, and elements
are cut into at most two parts. To fulfill these requirements, elements
are recursively subdivided, resulting in discontinuous changes of
element domains during shape optimization. A conceptually similar
strategy, which also faces similar challenges, is to simplify the inte-
gration domain by subdividing elements that are cut by boundaries
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Input Parameterization Mesh Generation Simulation Optimization Output

Fig. 2. Shape Optimization on CAD Given a CAD model (Input), a user first selects shape parameters for optimization (Parameterization). Intersecting the
model with a regular hexahedral mesh (Mesh Generation), we combine a novel integration scheme with XFEM to integrate finite element quantities with
subelement precision (Simulation). Analytical shape derivatives of model-grid intersections, our integration scheme, and XFEM simulations (Optimization),
enable function-, manufacturability-, and appearance-preserving shape optimization of CAD models (Output).

into curved quadrilaterals and triangles [Kudela et al. 2015]. How-
ever, so far this method has been demonstrated for 2D domains only,
and a robust extension to 3D is challenging because of non-trivial
configurations emerging from boundaries with complex subelement
detail. Alternatively, Müller et al. [2017; 2013] showed how to inte-
grate over volumes and surfaces defined by implicitly-given level
sets, but their integration strategy may fail when surface features
smaller than a simulation element are present. In our work, we
propose quadrature rules that solve this problem.

Optimizing CAD Models. As topology optimization methods do
not impose restrictions on attainable shapes [Bendsøe and Sigmund
1999; Liu et al. 2018], the resulting shapes often cannot be directly
fabricated and need to be reinterpreted as CAD models. In contrast,
shape optimization introduces a limited set of design variables, and
the design problem is formulated directly on the parameterized CAD
representation. In practice, shape optimization of CAD models is
known to be fragile and delicate to use because of different represen-
tations in design and analysis. An extensive review of parametric
shape optimization techniques can be found in [Daxini and Prajapati
2017].

The potential of using XFEM for shape optimization has already
been highlighted by Duysinx et al. [2006], combining simple para-
metric features such as circles, ellipses, and squares with a level
set topology optimization using XFEM. Zehnder et al. [2017] use
a similar approach to optimize a set of spherical inclusions. How-
ever, these techniques rely on the assumption that boundaries can
be well-approximated by functions which are linear on elements.
Therefore, they cannot capture features that are common in CAD
models.

Recently, Najafi et al. [2017] introduced an optimization scheme
built on NURBS-based interface-enriched generalized FEM (IGFEM),
illustrating the application for materials with inclusions. While
conceptually we share a similar vision, our method differs in sev-
eral ways: Firstly, the NURBS-enhanced IGFEM handles problems
with weak discontinuities, such as different material interfaces; our
method can handle strong discontinuities, such as cuts. Secondly,
their method is described and was implemented and validated only
for 2D shape optimization problems. Finally, an extension of their
integration strategy to 3D would require a tessellation of the volume
with 3D NURBS elements, resulting in similar challenges as faced by
other IGA methods. We demonstrate the applicability of our method
to complex 3D CAD models.

Notably, taking a data-driven approach, Schulz et al. [2017] pro-
posed an interactive design exploration for CAD models in which
an analysis is precomputed for parameter samples on an adaptive
grid and then interpolated during run-time. Although this approach
is promising for shapes with just a few design parameters, the com-
binatorial complexity becomes prohibitive for higher-dimensional
problems.

3 OVERVIEW
Before we delve into our technical contributions, we provide a high-
level overview of how we simulate the elastic response of a CAD
model, and optimize shape parameters with respect to objectives
that depend on this response.

3.1 CAD Model Representation
The most general form of a CAD model that we consider is a closed
NURBS mesh, i.e., a set of NURBS patches that form aC0 surface. We
assume that the modeler applied appropriate engineering judgment
during initial design, so that the input fulfills geometric requirements
for manufacturing (see Fig. 2, Input).
We rely on projective coordinates to represent NURBS patches,

where points [x,y, z]T in Euclidean coordinates are represented
with points [wx,wy,wz,w]T in projective space P3. We therefore
assume a NURBS patchwith control points qi , j ∈ P3 and polynomial
basis functions Bi , j : R2 → R to be a parametric mapping

σ : R2 → P3 u 7→
∑
i , j

Bi , j (u) qi , j (1)

from uv-coordinates u = [u,v]T to a point σ (u) in projective coor-
dinates. In contrast to the rational form σ̂ : R2 → R3 in Euclidean
space, this form is more convenient for simulation and optimiza-
tion because σ is polynomial. We use this definition everywhere,
and recover Euclidean coordinates by perspective division where
necessary.
During optimizations, we seek to ensure that a model remains

manufacturable, and that changes to shape parameters do not nega-
tively impact its function or characteristic appearance. For instance,
in CAD, it is commonplace to round off sharp edges and corners of
models by introducing fillets. If we moved control points of patches
in an uncontrolled manner, we could easily reintroduce sharp fea-
tures between neighboring patches.
To prevent undesirable changes to the model, we put users in

control, letting them define an implicit mapping from high-level
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Fig. 3. Hexahedral Meshing If we embed a CAD model in a regular hexa-
hedral simulation mesh, the NURBS representation is cut into arbitrarily
complex subvolumes near the boundary.

shape parameters p to the set ofm control points q ∈ R4m of the
NURBS mesh

cpara(p, q(p)) = 0. (2)

During optimizations, we then enforce these constraints cpara, keep-
ing the number and topology of patches fixed. We defer a detailed
discussion of our parameterization until Sec. 6.
A key benefit of our technique is that structural or related ob-

jectives are directly minimized on a CAD representation, and the
optimized output (Fig. 2, Output) can be loaded into a modeling tool
for further refinement, or to design the mold for manufacturing by
casting or modeling.

3.2 Deformable Solid Simulation on CAD
We target shape optimization of CAD representations where objec-
tives depend on the elastic response of the material delimited by the
boundary representation. To achieve this goal, our simulation has to
be sufficiently smooth and differentiable. A standard conformal Finite
Element (FE) discretization is ill-suited here because, if the shape of
a model undergoes significant changes, remeshing is unavoidable.
These uncontrolled topological changes lead to discontinuities, and
therefore to a non-differentiable simulation.
To mitigate this problem, we propose to embed the CAD model

in a regular hexahedral simulation mesh (Fig. 2, Mesh Generation).
This mesh remains constant during optimization. To compute the
elastic response x ∈ R3n of a CAD model (Fig. 2, Simulation), we
seek to minimize the standard potential energy

E(x) = Eint(x) − Eext(x) with Eint(x) =
∫
V
Ψ(x,X) dV , (3)

where we integrate the material-dependent strain energy density
Ψ [Sifakis and Barbič 2012] over points X ∈ R3 in the undeformed
volume V . The result of this minimization is a static equilibrium
Ex = 0 (Ex abbreviates the partial derivative ∂E

∂x ) where the internal
or elastic forces Eint,x are in balance with external forces Eext,x.
However, in contrast to standard FEM, the volumeV enclosed in the
CADmodel is the intersection of the B-rep with a regular hexahedral
mesh, and elements on the boundary are cut into arbitrarily complex
subvolumes as we illustrate in Fig. 3.
To represent the solid-void boundary in cut elements, implicit

descriptions where signed distances to the boundary are discretized
at mesh nodes, are common (see, e.g., [Schumacher et al. 2018]).
However, they fail to resolve subelement detail.

Ours

[Müller et al. 2013]
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Fig. 4. Quadrature For detailed subvolumes resulting from intersections
of CAD models with regular simulation meshes, Müller et al.’s quadra-
ture [2017; 2013] (bottom) introduces large numerical errors while ours (top)
is accurate. To generate the histograms on the right, we integrated the poly-
nomial basis that is used for rule construction. To compute the relative error,
we divided the absolute value of the difference of the exact and numerical
integrals over the subvolume, by the absolute value of the exact integral
over the element volume.

To loosen the coupling between mesh resolution and simulation
precision, we therefore represent cuts in elements explicitly with
an enrichment, and devise a quadrature scheme that integrates
quantities such as the elastic energy Eint over complex subvolumes
reliably and accurately. Although Koschier et al. [2017] recently
addressed a related problem for simulations of detailed cuts by
building on the quadrature scheme by Müller et al. [2013], a direct
extension of their technique to our setting is not possible because
integration over detailed curved domains with features smaller than
a simulation element lead to large numerical errors as we epitomize
in Fig. 4 bottom.

Based on this observation, we propose
(1) a modified set of quadrature rules that accurately handle

integration over curved domains of varying shape and size,
delimited by NURBS and planar patches (see Fig. 4 top).

(2) a refinement of rule construction to significantly reduce the
cost of evaluations of shape derivatives and updates to rules
when shape parameters change.

(3) a change of basis for enriched shape functions that makes
it straightforward to turn standard FEM into efficient XFEM
implementations.

We discuss our integration scheme in Sec. 4, and our XFEM for-
mulation in Sec. 5.

3.3 Optimizing CAD Models
A first generic type of objective we seek to optimize integrates a
function д that depends on the elastic response of the model over
the volume enclosed by the B-rep

f (q(p), x(p)) =
∫
V (q)

д(x,X) dV . (4)

Because the control points of the B-rep define the volume V , and
changes to shape parameters translate to changes in control points,
the rest shape of the model, hence also its elastic response, implicitly
depend on the shape parameters p.
Recent examples where this type of objective is used are tradi-

tional compliance optimization (see, e.g., [Liu et al. 2018]) or the
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minimization of the potential of failure of structures [Schumacher
et al. 2018]. For compliance optimization, the strain energy density
Ψ for linear elasticity is integrated over the rest volume, and for the
minimization of the potential failure, a metric that measures the
exponentiated distance of the Cauchy stress to the failure surface
of a generic failure criterion, is integrated.
It is often desirable to minimize objectives that depend on the

elastic response together with mass distribution objectives. For
example, if we seek to optimize the strength-to-weight ratio of an
asymmetric wheel design (compare with Figs. 1 and 15), the center
of mass has to lie on the wheel’s axis, and the major axis of the
moment of inertia has to align with this axis [Bächer et al. 2014].
Otherwise, the model cannot fulfill its function.

To support the co-optimization of such combinations of objectives,
we introduce a second type of objective that integrates standard
functions over the volume delimited by the B-rep

f (q(p)) =
∫
V (q)

д(X) dV . (5)

Substituting an either constant or spatially-varying density ρ(X)

times a monomial t ∈
{
1,X ,Y ,Z ,XY ,XZ ,YZ ,X 2,Y 2,Z 2} for the

integrand, we can compute a model’s mass, its center of mass, and
moment of inertia [Bächer et al. 2014]. For example, if we inte-
grate the density (times the constant 1), we get the mass of a CAD
model, and combined with our first type, we can formulate common
strength-to-weight ratio optimizations.

A third type of objective we seek to support only depends on the
elastic response of a model

f (x(p)) = д(x). (6)

This type of objective enables, for example, inverse shape de-
sign [Chen et al. 2014], where the rest shape of the model is opti-
mized such that the deformed model matches a target shape under
a predefined load as closely as possible.

Shape Optimization. In our shape optimizations (Fig. 2, Optimiza-
tion; Sec. 6), we then seek to minimize a single or a weighted com-
bination of these objectives over the parameterized volume that a
CAD model encloses

min
p

f (p, q(p), x(p)) s.t. cpara(p, q(p)) = 0
Ex(q(p), x(p)) = 0 , (7)

enforcing first-optimality constraints on our parameterization and
the elastic response. To prevent shape parameters from taking on
values that would lead to non-manufacturable designs, we add an
additional term to f that directly depends on p (e.g., penalizing the
radii of two cylinders to prevent them from overlapping), hence the
direct dependence of f on p.

To enable shape optimization on CAD, we contribute
(1) a continuous projection of shape parameters onto the con-

straint manifold spanned by the user-specified parameteriza-
tion, guaranteeing well-posedness of the problem, and

(2) a technique to efficiently compute derivatives of our hierar-
chical quadrature rules.

In Sec. 7, we demonstrate our technique on a wide range of ex-
amples including the compliance minimization of a motor housing,

the inverse shape design of a lampshade, and the co-optimization of
the strength-to-weight ratio and balance of an asymmetric wheel.

4 INTEGRATING OVER SUBVOLUMES
To simulate a complex CAD model on a simulation mesh that is not
conformal, we require quadrature rules for integration of functions
over (1) subvolumes, which are part of the model interior (e.g., to
accumulate elastic force density), and over (2) regions on the model
surface (e.g., to aggregate surface traction).

In our setting, quadrature rules are not readily available because
the integration domains are generated at runtime as intersections
between arbitrary models and planes (see Fig. 3). Müller et al. [2013]
proposed a moment-fitting technique to compute on-the-fly quadra-
ture rules for domains with curved boundaries. Originally developed
for integration of implicit representations and fluid simulation, we
propose a variant that avoids failure cases when integrating over ex-
plicitly defined, detailed subvolumes (compare with Fig. 4), and—at
the same time—increases computational efficiency of the technique.
In the following, we assume that the NURBS patches have been

cut along edges and faces of the hexahedral mesh. To do so, we rely
on robust algebraic curve tracing [Bajaj et al. 1988], and perturb grid
planes to avoid corner cases. Refer to Fig. 5 for an example case of a
patch-element intersection (left): Analogously to Müller et al. [2013],
we build integration schemes in a hierarchical manner. We use edge
and curve rules (right) to integrate over areas and surfaces, and area
and surface rules (middle) to integrate over volumes (left).
Below, we use д : R3 → R to denote a general function defined

on the volumetric domain enclosed by the CAD model. Our goal is
to construct quadrature rules that exactly integrate д, drawn from a
function space spanned by a set of basis functions, over a domain D∫

D
д(X) dD =

∑
j
w jд(Xj ). (8)

The domain D is either one-dimensional, for integration along axis-
aligned edges E (in blue in Fig. 5) or curves C (in yellow), two-
dimensional, for integration over planar patches A (in light gray) or
curved surfaces S (in dark gray), or three-dimensional, for integrals
over volumetric domains V . Because we integrate over undeformed
domains, we use capital Xj ∈ R3 to refer to quadrature points
corresponding to weightsw j .

V ∂V

A
S

∂A

E

C

Fig. 5. Nesting of Integration Rules To construct rules for integration
over volumes V (left), we rely on rules for integration over the volume’s
boundary ∂V , decomposed into planar areas A (in light gray) and curved
surfaces S (in dark gray). To generate rules for area and surface integrals
(middle), we express integrals along the boundary ∂A with integrals along
edges E and curve segments C (right).
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4.1 Integrating along Edges and Curves
To integrate along axis-aligned edge segments E, we form one-
dimensional integrals, for example

∫
[a,b] д(X ,Y ,Z ) dX for an in-

tegral along the X -axis. Like Müller et al. [2013], we perform a
change of variables to map the interval [a,b], delimited by the two
segment endpoints, to the interval [0, 1], then apply a standard
Gauss-Legendre rule.
Intersections of NURBS patches with hexahedral elements form

planar curves that are embedded in planes parallel to one of the co-
ordinate planes. To integrate along these curves, Müller et al. [2013]
construct a divergence-free basis, and express curve integrals with
sums of integrals along straight edge segments (see supplemen-
tal material for detail). However, as we illustrate in Fig. 6 with a
circle example, their method loses accuracy
as the chord length (in yellow) of the cut cir-
cle decreases. Another case that arises in our
application domain is that patches intersect
within elements, and form, in general, spatial
curves as shown in the inset.

0 0.5 1
0

2π

position of circle center

ar
c
le
ng

th

Müller
ours
ref

10

Fig. 6. Integrating Features Designed for integrating over implicitly de-
fined domains, Müller et al.’s method [2013] fails to integrate subelement
detail as we demonstrate with a curve integral to compute the arc length
of a cut circle (in yellow). While our integration accurately predicts the
analytical arc length (green vs. dashed line), Müller et al.’s method is less
accurate (see red line) the shorter the edge E (in blue) becomes.

For accurate integration along curves C , we parameterize them
with a mapping from t ∈ [a,b] to spatial curve points r(t), then use
a Gauss-Legendre rule for numerical integration of the transformed
integrals

∫
[a,b] д (r (t)) ∥r′ (t) ∥ dt where r′ denotes the derivative

of the mapping with respect to parameter t .
While we can expect intersection curves to be sufficiently smooth,

we cannot, in general, extract analytical parameterizations from
intersections of the B-rep with the hexahedral mesh. Hence, we
represent them with sample points, and approximate its parametric
form with a Lagrange interpolating polynomial as we describe in
more detail in our supplemental material. Note that the accuracy
of the Gauss-Legendre integration is preserved for a polynomial
interpolation of sufficiently high degree [Atkinson and Venturino
1993].

4.2 Integrating over Areas and Surfaces
To integrate over planar areas and surfaces, we make use of the
first nesting of our hierarchical integration scheme. There are two
cases to consider: (1) integrals over planar areas that lie in grid

planes of the simulation mesh, and (2) integrals over curved surfaces,
represented by NURBS patches.

Y

0 X

η

0

ξ

1

1

AĀ

(
ξ j , ηj

) (
X (ξ j ), Y (ηj )

) (
X (ξ j ), Y (ηj ), Z

)

Fig. 7. Integrating over Areas To integrate over planar domainsA (right),
we first compute an axis-aligned bounding box (middle), then transform
the integral to the isoparametric domain Ā (left). In the domain Ā, we
use standard Gauss quadrature points (ξ j , ηj ) (in beige), and transform
them back to spatial (X (ξ j ), Y (ηj ), Z ) after rule construction. For surface
integrals, we perform this transformation in parameter domain.

Area Integrals. For integration over planar domains A that are
parallel to one of the coordinate planes, we use moment fitting
analogously to Müller et al. [2013]. Moment fitting is similar to the
construction of Newton-Cotes rules: given a set of predefined quad-
rature points, a system of equations is solved to compute correspond-
ing quadrature weights such that a polynomial basis {p1, . . . ,pm },
spanned by a set ofm functions, is integrated exactly. However, a
crucial difference is that, due to the non-standard domain, basis
functions cannot be integrated analytically, and this is the reason
why a nesting is necessary.

There is a second important difference between Newton-Cotes
and Müller et al.’s construction of rules: To avoid having to rederive
rules whenever the domain [a,b] changes, Newton-Cotes rules are
constructed and tabulated for standard ranges (e.g., the range [0, 1]).
For moment fitting, tabulation of rules is not possible due to the
non-standard domains. However, transforming the area integrals
such that the bounding boxes of the transformed domains coincide
with the unit square [0, 1]2 enables the use of a single system matrix
for the construction of all our area and surface integrals. This bears
far-reaching advantages: Whenever we make changes to shape
parameters, rules have to be updated. If the system matrix does
not depend on the parameters, the system can be prefactorized and
rules updated more efficiently. In addition, we can avoid having to
take derivatives of the inverse of a matrix, leading to a significant
performance increase for evaluations of shape derivatives.
More formally, to integrate over an area A that lies in the XY -

plane, we first compute an axis-aligned bounding box [a,b] × [c,d]
(comparewith Fig. 7middle), then define amapping between isopara-
metric variables ξ and η and the two spatial coordinates(

X (ξ )
Y (η)

)
=

(
b − a

d − c

) (
ξ
η

)
+

(
a
c

)
. (9)

Because of the linearity of the mapping, its Jacobian is constant
and the transformed integral reads∫

Ā
д(X (ξ ),Y (η),Z ) det

(
∂(X ,Y )

∂(ξ ,η)

)
dĀ (10)
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where Ā is the non-uniformly scaled domain, and the determinant
of the Jacobian is set to the constant (b − a)(d − c).

Moment Fitting. For readers unfamiliar with moment fitting, we
provide a brief technical overview here, pointing the interested
reader to the original work [Müller et al. 2013] or our supplemental
material for detail.
To compute the quadrature weights, we form the system

©­­«
p1(ξ1,η1) . . . p1(ξn,ηn )
...

. . .
...

pm (ξ1,η1) . . . pm (ξn,ηn )

ª®®¬︸                                       ︷︷                                       ︸
A

©­­«
w̄1
...

w̄n

ª®®¬︸   ︷︷   ︸
w

=

©­­­«
∫
Ā p1(ξ ,η) dĀ

...∫
Ā pm (ξ ,η) dĀ

ª®®®¬︸                   ︷︷                   ︸
b

with constant matrix A, evaluating the basis functions at Gauss
quadrature points [Müller et al. 2013]. For moment fitting to work,
there need to be at least n ≥ m quadrature points, (ξ j ,ηj ), forming
an underdetermined system. To solve the system, we factorize the
pseudo-inverse in the minimal-norm solution

w = AT
(
AAT

)−1
b. (11)

While matrix A is independent of the integration domain, the
right-hand side is not. To evaluate b, we make use of the divergence
theorem ∫

Ā
pi (ξ ,η) dĀ =

∫
∂Ā

n(ξ ,η) · Pi (ξ ,η) ds̄ (12)

where n is the outward-facing normal at (ξ ,η) and

Pi (ξ ,η) =
1
2

( ∫
pi (ξ ,η) dξ∫
pi (ξ ,η) dη

)
(13)

the antiderivative, chosen such that ∇ · Pi = pi . Note that the
boundary of the domain ∂Ā consists of straight edge segments and
planar curves (see Fig. 5 right), and we use rules developed in Sec. 4.1
to numerically integrate along them.
After construction, we transform the weights and quadrature

points back to the original domain

w j = (b − a)(d − c)w̄ j and Xj =
[
X (ξ j ),Y (ηj ),Z

]T
. (14)

Surface Integrals. For surface integrals, Müller et al. [2013] pro-
ceed analogously to the edge-curve case, and express surface inte-
grals with a sum of integrals over planar areas. The resulting rules
suffer from similar issues as the one-dimensional rules: if the planar
areas become too small, the integration error increases uncontrol-
lably.
For accurate integration over surfaces, we instead make use of

the parametric form of NURBS patches, expressing them as area
integrals in parameter space∫

S
д(X) dS =

∫
A
д(σ̂ (u,v)) ∥σ̂u (u,v) × σ̂v (u,v)∥ dA. (15)

Thus, integration weights are computed in uv-space, then trans-
formed to physical coordiantes by multiplication with the area fac-
tor ∥σ̂u × σ̂v ∥. Due to the non-linearity of this transformation, the
resulting rule may not exactly integrate polynomials in physical
coordinates. However, this error is mitigated by the smoothness of
the area factor as we empirically show in Fig. 4.

V

σ̂u × σ̂v

V̄

det(S) S−T (σ̂u × σ̂v )X

Z

Y

Fig. 8. Integrating over Volumes To integrate over a volumetric domain
V , we transform an axis-aligned bounding box of the volume to the unit
cube V̄ . For consistency, normals σ̂u × σ̂v on curved surfaces need to
be transformed before we can apply surface area rules. We use the linear
transformation rule for cross products to do so.

4.3 Integrating over Volumes
To integrate over volumes, we proceed analogously to area integra-
tion (compare with Fig. 8) as we formally describe in our supplemen-
tal material: We first compute a bounding box [a,b] × [c,d] × [e, f ],
and define a mapping to the unit cube. To evaluate the integrals of
basis functions over the transformed domains, we use area and sur-
face rules developed in the previous section, establishing a second
and final layer of nesting.

An important detail is that the non-uniform scaling S = diag(b −

a,d − c, f − e) has to be taken into account when we transform
integrals over curved domains as we illustrate in Fig. 8. We use the
rule for linear transformations of cross products to account for this
scaling in our surface integrals∫

A
д(X) ∥Sσ̂u ×Sσ̂v ∥ dA =

∫
A
д(X) det(S) ∥S−T σ̂u ×σ̂v ∥ dA. (16)

4.4 Polynomial Bases and their Degree
The choices of bases for the construction of curve, area, and volume
rules are not independent due to two reasons: firstly, the curve or
area rules are used to evaluate the flux of polynomials Pi in the
construction of area and volume rules, respectively. Secondly, we use
surface rules to evaluate polynomials in spatial coordinates arising
from the finite element method, and therefore integrals over д ◦ σ̂
with polynomial д need to be approximated sufficiently well. These
observations inform our choice of basis {ξ iηjζ k : i + j + k ≤ 4} for
our volume rules, and the compatible basis {ξ iηj : 0 ≤ i, j ≤ 4} for
our area rules. For surface rules, we use maximal degree of 5 instead
of 4 to account for the additional nonlinearity in the area factor.

5 SIMULATING CUT ELEMENTS
To illustrate the use of our rules in solving static elasticity problems
on domains enclosed by a B-rep, it remains to discuss how we can
accurately represent interpolated quantities on an unfitted mesh. To
this end, we enrich elements which are cut by the boundary.
After discussing standard elements, we highlight how a change

of basis for enriched elements (1) enables the use of a standard FEM
implementation for element energy, force, and tangent stiffness
evaluations for cut elements, (2) increases the efficiency of these
evaluations, and (3) preserves desirable properties of Lagrange shape
functions.
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Although we apply our technique to elasticity problems within
the scope of this paper, our technical contributions are not limited
to a particular PDE.

5.1 Standard Elements and Elasticity
Because our simulation mesh consists of regular cuboids, hexahe-
dral elements lend themselves. We use standard Lagrange shape
functions Ni : R3 → R to interpolate an element’s undeformed
nodes Xi , defining a mapping X(ξ ) =

∑
i Ni (ξ )Xi from natural

to physical coordinates. Relying on the same interpolation for the
deformed configuration, we define the deformation gradient

F(ξ ) =
∂x(ξ )
∂ξ

(
∂X(ξ )

∂ξ

)−1
with x(ξ ) =

∑
i

Ni (ξ )xi . (17)

The choice of bases for rule construction depends on the order of
our shape functions. It is worth pointing out that the mapping from
natural to physical coordinates is linear for hexahedral elements,
meaning that only the coefficients of the polynomial shape functions
change. However, note that, unlike for tetrahedral elements, the
deformation gradient is not constant for linear Ni .
To compute a static equilibrium, the strain energy density Ψ(F)

of a linear or hyperelastic material [Sifakis and Barbič 2012; Sin et al.
2013] is integrated over all hexahedral elements of volume Ve

Eint(x) =
∑
e

∫
Ve

Ψ(F(ξ )) dV (18)

where the integral over element e only depends on the incident
nodal degrees of freedom.
Note that we perform integration in physical and not in natural

coordinates, hence we transform quadrature points Xj in the un-
deformed volume to natural coordinates ξ j . To do so, we subtract
the “origin” of the element (vertex closest to the origin for a hexa-
hedron with positive coordinates) from the quadrature point, then
scale the resulting vector with the inverse of the side lengths of the
hexahedron.

5.2 Cut Elements
To integrate the strain energy for elements cut into subvolumes,
the extended finite element method introduces additional “enriched”
degrees of freedom together with specifically constructed shape
functions. Our enrichment strategy is mathematically equivalent to
Shifted Sign Enrichment (SSE), which was recently used by Koschier
et al. [2017] to explicitly represent strong discontinuities along de-
tailed, piecewise linear cuts. We will first discuss standard SSE, and
then present a reformulation that reduces the computational over-
head for (multi-)enriched elements and simplifies implementation.

For elements cut into multiple subvolumes Vj , standard SSE adds
enriched shape functions to ensure that the function space is com-
plete on every subvolume Vj

x(ξ ) =
∑
i

©­«Ni (ξ )xi +
∑

j :Vj,Vi

1Vj (ξ )Ni (ξ )x
j
i
ª®¬ (19)

where xji are the additional degrees of freedom and 1Vj is the char-
acteristic function that evaluates to one if a point with natural

coordinates ξ is contained inVj and zero otherwise. To ensure com-
pleteness, the second sum runs over all subvolumes except the one
we “assign” the original shape function Ni to, denoted by Vi . Refer
to Fig. 9 left for a 1D example where two linear basis functions
are enriched to ensure that the function space is linear on all three
“subvolumes”. The formulation used by Koschier et al. is identical to
this one except for signs.
Replacing the interpolation of deformed nodes in the deforma-

tion gradient with this enriched interpolation, and integrating the
strain energy density over the individual subvolumes Vj , we can
accurately simulate the elastic response of the body enclosed in a
B-rep. However, the traditional approach (Eq. 19) of adding enriched
basis functions to the existing set has practical shortcomings: For
enriched elements, the elastic energy depends on the additional
degrees of freedom, meaning that the elemental force vector and
tangent stiffness matrix grow in size. For example, for linear hexa-
hedral elements cut into k subvolumes, the energy gradient has size
24k , and the energy Hessian size 24k × 24k . Due to the dependence
of the elemental energy and energy derivative evaluations on the
number of subvolumes, custom code is required for every discrete
number of subvolumes.

0

1

0V2 V1 V31

N1

0

1

0V2 V1 V31

N2

0

1

0V2 V1 V31

N11V2

0

1

0V2 V1 V31

N21V2

0

1

0V2 V1 V31

N11V1

0

1

0V2 V1 V31

N21V1

0

1

0V2 V1 V31

N11V1

0

1

0V2 V1 V31

N21V1

0

1

0V2 V1 V31

N11V3

0

1

0V2 V1 V31

N21V3

0

1

0V2 V1 V31

N11V3

0

1

0V2 V1 V31

N21V3

Koschier et al. Ours

Fig. 9. Change of Basis Comparing our (right) to Koschier et al.’s basis
(left) for a 1D example where the domain is partitioned into “subvolumes”
V1, V2 and V3, we observe that both are trilinear on all three subvolumes
while the support of the individual basis functions is different: while V2 and
V3 are affected by three, and V1 by four DOFs for Koschier et al.’s basis, all
subvolumes are only affected by two DOFs for our basis.

To resolve these practical roadblocks, we propose to perform a
change of basis

x(ξ ) =
∑
j

(∑
i

1Vj (ξ )Ni (ξ )x
j
i

)
. (20)

As illustrated in Fig. 9 right (1D example), this basis spans the same
function space, but the support of the basis functions for each subvol-
ume are local to their domain. This reformulation has far-reaching
benefits. Because we can treat each subvolume Vj of an enriched el-
ement like a standard element with nodal degrees of freedom xji for
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every Ni , a standard FEM implementation can be used to evaluate
the elemental elastic energy and its derivatives. Moreover, unlike the
traditional formulation of strong-discontinuity enrichments (Eq. 19),
the computational complexity of Hessian evaluations scales linearly
instead of quadratically with the number of subvolumes. For exam-
ple, for linear hexahedral elements, only k evaluations of 24 × 24
Hessian matrices are needed (instead of one 24k × 24k matrix). Be-
cause intersections of CAD models with hexahedral meshes tend to
cut elements into large sets of subvolumes, we observe a remarkable
increase in simulation and optimization performance. Additionally,
while the enriched basis in Eq. 19 does not fulfill the partition of
unity property, our enriched basis does. This guarantees that rigid
body movement can be correctly represented even if cut elements
are present [Liu 2016].
It remains to discuss which degrees of freedom xji are shared

between incident elements, and which ones are kept separate: For
every element incident to vertex i , we check if the elemental subvol-
umes are connecting through grid faces. As we illustrate in the inset

V1 V3

V2

i

in 2D, we consider connected subvolumes (vol-
umes separated by dotted lines) to be one entity
Vj , adding internal force and tangent stiffness
contributions to a shared degree of freedom xji .
We therefore have three degrees of freedom x1

i ,
x2
i , x3

i instead of five in the inset example. For integration, we con-
sider elemental subvolumes separate entities.

5.3 Boundary Conditions and Gravity
Unlike conformal meshes, our nodal degrees of freedom do not lie on
the surface, and we cannot enforce Dirichlet conditions by holding
a subset of them fixed. We instead rely on Nitsche’s method [1971],
a technique well-known in mechanical engineering.

To enforce prescribed displacements û(ξ ) on a part of the bound-
ary Sdisp, we introduce a displacement energy

Edisp(x,λ) =
∫
Sdisp

λ(ξ ) · (u(ξ ) − û(ξ )) dS, (21)

setting u(ξ ) = x(ξ ) − X(ξ ). The Lagrange multiplier function λ(ξ )
can be thought of as reaction traction acting on the surface Sdisp to
enforce the prescribed displacements. Nitsche showed that λ equals
−P · n where P = ∂Ψ

∂F is the first Piola-Kirchhoff stress (PK1) and n
the surface normal evaluated at ξ . This substitution removes λ as
an unknown variable.

In a discrete setting, this formulation is unstable, and we add the
common stabilizer

β

2

∫
Sdisp

∥u(ξ ) − û(ξ )∥2 dS (22)

Sdisp

Stract

β too small (unstable)

β in valid range

β too large (locking)

with stabilization
parameter β , to
Edisp. If β is cho-
sen too small, the
method remains
unstable. If it is
too large, elements
intersecting the

i

V

i

ddcrit

V1 V2

Fig. 10. DifferentiabilityA concave feature of themodel (yellow) intersects
the hexahedral mesh adjacent to a simulation node i in a single connected
component V (left). If the feature moves past the boundary of the adjacent
elements, the intersection splits into two parts V1 and V2 (right), and the
simulation node into two enriched degrees of freedom.

boundary Sdisp effectively lock. Chosen in the right range, β bal-
ances the enforcement of prescribed displacements with the elastic
response of the model as illustrated in the inset.
Surface tractions t̂(ξ ) : R3 → R3 that act on another part Strac

of the boundary (see above inset) can be added as in standard FEM
with a traction energy

Etrac(x) =
∫
Strac

t̂(ξ ) · u(ξ ) dS . (23)

Note that for integration over the domains Sdisp and Strac, our
rules for curved surface domains can readily be used.

Minimizing the total potential energy E with Eext = Etrac + Edisp,
we can solve for the equilibrium state x, while accounting for fea-
tures at subelement resolution. For models where gravity is non-
negligible, we add the energy Egravity(x) =

∫
V ρ g · u(ξ ) dV with

density ρ to the external energy. The constant 3D vector g points in
the direction of gravity and has magnitude equal to the gravitational
acceleration.

5.4 Differentiability
In its current form, our XFEM formulation is sufficiently smooth
and differentiable with one exception as we illustrate in Fig. 10 with
an example in 2D: if shape parameters change, a subvolumeV could
split into two subvolumes V1 and V2 in the 1-neighborhood of a
vertex i . As a consequence, the degree of freedom xi is split into
two enriched degrees of freedom x1

i and x2
i , and the elastic response

of the model may become discontinuous as a function of the shape
parameters. Note that our simulation is only discontinuous at the
point of the split.
To detect cases that could lead to a discontinuity, we compare

the subvolumes in the 1- and 2-neighborhood of a vertex. If two
(or more) subvolumes in the 1-neighborhood are connected in the
2-neighborhood, adjustments to shape parameters could lead to a
discontinuity.
To avoid these discontinuities, we define a metric d that is zero

at the point where a volume splits, and varies in the range [0,dcrit]
if the two subvolumes are close to merging. A metric that lends
itself is the shortest orthogonal distance between the boundary of
the 1-neighborhood of vertex i and a geometric saddle point in
the model (compare with Fig. 10 right). To ensure that degrees of
freedom smoothly merge as d goes to zero, we add penalties of the
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r
c

p1

n1

p2 n2

P1

P2

C

d

Constraints(P1,C):
(p1 − c) · n1 − r = 0

d · n1 = 0
Constraints(P2,C):

(p2 − c) · n2 − r = 0
d · n2 = 0

Fig. 11. Tangential Constraints A cylindrical segment C is tangent to
two adjacent planes P1 and P2. To maintain the tangencies, constraint
equations are generated and added to cpara. The surface parameters
p1, n1, p2, n1, c, r , d are part of the parameter vector p.

form

b(d)∥x1
i − x2

i ∥
2 with b(d) = log2

(
min

{
1,

d

dcrit

})
(24)

to our potential energy E. This procedure guarantees a smooth
transition of the simulation result as concave features pass through
the simulation mesh. For numerical reasons, we cut off b at a high
value, so the conditioning of the discretized PDE does not deteriorate.
Note that we have not observed any negative effects due to this
choice.

6 OPTIMIZING SHAPE PARAMETERS
Our shape optimization enables a wide range of applications, in-
cluding combined mass distribution and strength-to-weight ratio,
rest shape optimization, and various other inverse design problems
that require an accurate integration of properties or discretized
PDE equations over the parameterized design domain enclosed by
a B-rep.
A key advantage of our approach is that our hexahedral simu-

lation mesh is independent of our parameterized boundary repre-
sentation. Hence, in the context of strength-to-weight ratio or rest
shape optimization, we can work with the same hexahedral mesh,
even under large changes of shape parameters.

Before we discuss how to efficiently compute derivatives of inte-
gration rules, the elastic response, and the user-specified parame-
terization, we will refine our parameterization formulation.

6.1 Parameterization
A good parameterization should provide sufficient degrees of free-
dom to enable meaningful improvements of combinations of ob-
jectives, while preserving the original design intent of the CAD
model. To this end, shape parameters should describe its shape in
an intuitive manner, enabling the user to easily select a subset of
them for optimization.
On a low level, we represent CAD models as a set of NURBS

patches as described in Sec. 3. We collect all NURBS control points in
a vector q. CADmodels typically containmany geometric primitives,
such as, e.g., planar, cylindrical, or toroidal segments. These aremore
intuitively described using mid-level parameters such as, e.g., the
central axis and radius of a cylinder. We collect all these parameters

in a vector p. Control points in q necessarily depend on the values
of parameters in p, e.g., changing the radius of a cylinder moves
the NURBS control points describing the cylinder’s geometry. We
denote this mapping as q = q(p). By only modifying q indirectly
through p, primitives retain their basic shape.
However, additional constraints are required to preserve the de-

sign intent of a CAD model. A frequent example is a fillet, i.e., an
initially sharp edge that has been rounded off by adding a cylinder
segment, as seen in Fig. 11. The cylinder C is tangent to the planes
P1 and P2, and this tangency must be preserved when modifying p;
otherwise, unintended sharp edges may be introduced. Constraints
of this type can be formalized as equations in p, as exemplified for
the fillet in Fig. 11.
Once a CAD model is loaded, we traverse all pairs of adjacent

surfaces and detect tangency relationships that need to be preserved.
This is done automatically using a look-up table that stores possible
relationships between primitive types, such as the one between a
cylinder and a planes in the fillet example above. Whenever a situa-
tion like this is encountered, a list of implicit constraints is generated
for the pair of surfaces in question. Processing the entire model in
this manner yields a non-linear constraint system cpara(p, q(p)) = 0
that needs to remain satisfied throughout optimization. In addition
to these automatic constraints, our UI enables the user to define
high-level model parameters by grouping specific parameters in
p, to keep certain surfaces fixed, or to enforce symmetries in the
model. These additional constraints are also added to cpara.

During optimization, it may occur that no value of p exists which
satisfies the tangency and user-specified constraints in cpara at the
same time. To ensure that the CAD model remains valid regardless,
we introduce effective shape parameters p⊥, which represent the
projection of the given parameters p onto the constraint manifold
defined by cpara. This projection together with q = q(p⊥) defines an
implicit mapping from model parameters to NURBS control points.
To summarize, we minimize

fpara(p⊥, q) =
1
2
∥p⊥ − p∥2 +

1
2
∥q(p⊥) − q̂∥2 (25)

over the constraint manifold spanned by cpara, or the corresponding
Lagrangian

L(p⊥, q,λ) = fpara(p⊥, q) − λT cpara(p⊥, q(p⊥)) (26)

to first-order optimality. Here, p is the set of shape parameters
modified through an optimization step, and p⊥ is its projection onto
cpara. Insufficiently constrained control points q(p⊥) are modified
as little as possible by keeping them close to their initial values q̂.

6.2 Shape Optimization and Derivatives
After the user specifies a desired parameterization together with
a set of objectives that depend on the parameterization and the
elastic response of the model, we aim at solving the first-optimality
constrained problem

min
p

f (p⊥(p), q(p⊥), x(p⊥)) s.t.

Lp⊥
Lq
Lλ

 = 0 and Ex = 0. (27)

Note that, compared to our formulation as outlined in our overview
(Sec. 3), we replace the direct dependence of the objective on the
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parameters with an implicit dependence p⊥(p). Posing a design
optimization in this particular way is advantageous because, dur-
ing numerical optimization, the parameters p can take on values
that do not fulfill our parameterization constraints, for example
during line search along a descent direction. The combination of a
continuous “projection” p⊥(p), formulated with a first-order opti-
mality constraint on a parameterization Lagrangian, and the use of
only valid sets of parameters in objective evaluations, enables the
use of a standard quasi-Newton for optimization where first-order
optimality constraints are implicitly enforced.

In objective and objective gradient evaluations for a particular p,
we first solve the Lagrangian to first-order optimality. We then use
the resulting set of control points q(p⊥) in the minimization of the
potential energy E to equilibrium, Ex(q(p), x(p)) = 0. To compute
shape derivatives of our objective with respect to shape parameters

dp f = fp⊥dpp⊥ + fqdpq + fxdpx, (28)

we apply the implicit function theorem to our parameterization
Lp⊥,p⊥ Lp⊥,q Lp⊥,λ
Lq,p⊥ Lq,q Lq,λ
Lλ,p⊥ Lλ,q



dpp⊥
dpq
dpλ

 = −


Lp⊥,p
Lq,p
Lλ,p

 (29)

and quasi-static equilibrium Ex,xdpx = −Ex,qdpq where we use (.)p
for partial, and dp(.) for total derivatives. For efficiency, we rely on
the adjoint method.

6.3 Taking Derivatives of Quadrature Rules
If we make adjustments to our shape parameters, the volume V
changes, and hence the domains of our hierarchical rules. While
these changes are restricted to elements that were or are newly
cut by the boundary, the cost of taking derivatives of rules can be
considerable and requires a significant amount of bookkeeping. To
reduce the computational complexity and simplify the implemen-
tation of shape derivatives, we describe how we can avoid some
of the terms in our volume, area, and surface rules. Note that rule
construction only depends on the control points of the B-rep, hence
we can safely ignore other dependencies here.

Area, Surface, and Volume Rules. To keep the matrix A in the
moment fitting equation (Eq. 11) constant, we propose to transform
the non-standard domains. However, the right-hand side b depends
on the shape of the non-standard domain, hence the quadrature
points and weights, in general, depend on the shape parameters

d
dp

∫
D(q)

д(X) dD =
∑
j

( dw j

dp
д(Xj ) +w j

∂д(X)

∂X
dXj

dp

)
. (30)

A key observation to increase the efficiency of rule derivatives, is,
that, if we keep the transformations for volume, area, and surface
integrals after initial rule construction fixed, the quadrature points
no longer depend on the shape parameters for volume, area, and
surface rules

d
dp

∫
D(q)

д(X) dD =
∑
j

∂w j

∂p
д(Xj ) for D ∈ {A, S,V }. (31)

Note that for edge and curve rules, the transformation from the
general domain [a,b] to a standard domain [0, 1] is necessary. Other-
wise, we cannot apply tabulated Gauss-Legendre rules. However, if

we keep applying the initial transformation for area, surface, and vol-
ume rules, the weights, computed with the moment fitting equation,
only depend on the right-hand side b but not on a shape-dependent
transformation. Crucially, these shape derivatives are exact if func-
tion д is in the function space spanned by the bases used for rule
construction.

Fig. 12. Derivatives of Curve Rules To parameterize curve integrals, we
sample intersection curves between patches and hexahedral grid planes.
We differentiate the following cases (from left to right): intersection points
between three or more model surfaces (cases 1 and 2), sample points on an
intersection curve between two surfaces (case 3), sample points on surface-
grid intersection curves (case 4), and intersection vertices between a surface
and two grid planes (case 5).

Curve Rules. As we pointed out in Sec. 4, it is, in general, not
possible to extract an analytical parameterization for intersection
curves that arise when several NURBS patches intersect within a
hexahedral element, or a NURBS intersects with one of the element
planes. Hence, we represent these planar or spatial curves with
sample points, and differentiate between several cases, illustrated
in Fig. 12.

During optimizations, we make changes to shape parameters, and
implicitly also to control points. Changes to the control points, in
turn, move the position of sample points on intersection curves. To
treat NURBS patches and element planes the same, we parameterize
the latter, defining a mapping from parameter values u = [u,v]T to
plane points σ̂ (u) ∈ R3. A sample point on two or more “surfaces”
is then defined by a pair of uv-coordinates for each surface. To be
able to take shape derivatives, it is important to understand the
relationship between these coordinates and the shape parameters.
To this end, it is best to look at a specific example (case 1 or

5 in Fig. 12) where three “surfaces” intersect in a single point:
if we change p, the control points of the three patches and also
the uv-coordinates in their respective parameter domain, change.
What uniquely defines the uv-coordinates is the constraint that
they all map to the same point in 3D, formalized with an equation
σ̂i (ui (p), q(p))−σ̂j (uj (p), q(p)) for every pair (i, j) of “surfaces”. Col-
lecting these equations in a system Σ = 0, and the uv-coordinates
in a vector U, we apply the implicit function theorem to compute
analytical derivatives dpU = −Σ−1

U Σq dpq.
However, this particular case is rare because real-world CAD

models typically have filleted edges and corners with either all
adjacent surfaces or subsets of them being tangent (case 2). In such
cases, the Jacobian ΣU becomes rank-deficient. Another case that
leads to a rank-deficiency in ΣU arises if we place sample points on
intersection curves that are defined by two “surfaces” (case 3 or 4 in
Fig. 12).

To be able to compute derivatives in these cases, we first classify
sample points by analyzing the normals of adjacent surfaces. We
then complement the equations in Σ = 0 with planes that span the
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Fig. 13. Quadrature convergence. Relative error of volume integrals un-
der refinement of integration grid and refinement of curve integral approx-
imation. The cell side length in the integration grid is given by h, and is
isotropically refined in all three directions. Each curve (cf. Sec. 4.1) is split
into a constant number of segments, which is given in the legend. The graphs
compare a piecewise-linear curve approximation and a piecewise-parabolic
curve approximation. Convergence is faster for parabolic segments, and
accuracy improves with both types of refinement.

null space. For example, for a sample point on a sharp edge (cases 3
and 4), we define a plane whose normal is set to the cross product of
the two surface normals. Because the components of derivatives that
lie in this null space do not change the value of our integrals to first
order, we can safely ignore them after computing the derivatives.

7 RESULTS
Accuracy of Quadrature. We evaluated the accuracy of our quad-

rature scheme by comparing the results to a ground truth and to the
results obtained with Müller et al.’s method [2013]. For evaluation,
we intersected the model shown in Fig. 4 with a regular grid to yield
a large number of geometric subvolumes, and selected a set of 23 test
monomials. The ground truth was obtained by finely triangulating
every subvolume and analytically integrating every monomial.

We generated one integration rule for each subvolume using our
method and one using Müller et al.’s method. For a fair comparison,
we used the same quadrature point locations on surfaces and in
volumes, and the same polynomial basis. As an error metric, we
use the absolute difference between the ground truth integral and
the quadrature solution, divided by the integral over the surround-
ing element. All combinations of subvolumes and monomials yield
18, 078 data points in total.

Fig. 4 shows that our method yields a worst-case relative error
of 8.6 × 10−4, with the vast majority of samples below 10−4. Müller
et al.’s method may fail to produce usable rules on curved surfaces
if the volume contains few planar surfaces (compare with Fig. 6),
or if the distribution of quadrature points on curved surfaces is
unfavorable.

Convergence of Quadrature. Fig. 13 shows additional tests for the
convergence of integration results. We performed volume integral
tests on an analytical surface (a semi-torus, m1), and a model with
small topological features (m2). Three parameters were varied dur-
ing the test: the tessellation level h of the regular grid, the number of
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Fig. 14. Stress convergence. Simulation of ring in compression using
XFEM, embedded in the simulation grid in different orientations (right). Ver-
tical stresses along horizontal cross-section (left) for different h-refinement
levels and different rotations (gray curves), and ground truth (red curve).

segments per curve used to approximate line integrals (cf. Sec. 4.1),
and the order of these segments (linear or parabolic).

At the lowest tessellation level, the models are embedded in grids
of 6 × 12 × 4 cells for m1 and 10 × 1 × 6 cells for m2, respectively.
For m2, this is sufficiently coarse that individual cells may contain
several holes. Relative integration errors of down to 10−7 may still
be reached by increasing the number of segments per curve. The
comparison between segment types shows that parabolic segments
aremore economical; two parabolic segments achieve approximately
the same accuracy as twenty linear segments. The diagrams also
indicate faster convergence rates for parabolic segments, which
matches theoretical predictions [Atkinson and Venturino 1993]. The
computational cost per segment is similar for linear and parabolic
segments, as they use the same number of integration points.

Comparison to Standard FEM. We performed a simulation test
of our XFEM formulation on a standard example of a ring in com-
pression. This was to verify that the extended formulation with
Nitsche’s method on Dirichlet conditions converges to the same
result as standard FEM. A front view of the ring model is shown
in Fig. 14 (top, right). The blue bars denote Dirichlet conditions,
with an enforced compressive displacement on the bottom. Vertical
stress, σy , along a horizontal cross section is shown as a red curve.
To ensure stability under different embeddings, the simulation

was repeated for eight different rotations of the model within the
grid. This leads to Dirichlet conditions and stress measurements at
different inclinations, as indicated in Fig. 14 (bottom, right). The
four plots on the left show XFEM stresses for different h-refinement
levels, where h = 1 corresponds to the tessellation shown in the fig-
ure. The ground truth obtained from high-resolution standard FEM
is shown as the red curve, and the measurements from differently
rotated XFEM meshes are shown as gray curves. The plots show
that the stresses converge consistently for all rotations.

Aircraft. Our differentiable simulator can deal with models of
high geometric complexity, exemplified by a model of the internal
structure of an aircraft where we simulate the deflection of the wing
under the load of the aircraft (Fig. 1 left).
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Fig. 15. Asymmetric Wheel.

7.1 Shape Optimization
In the remainder of this section, we will discuss our optimization
results. To visualize parameterizations, we use yellow for parame-
terized surfaces and orange for surfaces that move due to tangent
preservation constraints. Dirichlet conditions are shown in red and
surface tractions in green.

Wrench. The wrench model (see Figs. 2 and 17 top row) is com-
posed of a set of NURBS patches that are subject to many tangency
relationships along its edges. The model is parameterized by the
height and width of the slotted indentation in the handle, the height
and width of the hole in the handle, and the fillet radius around
the hole. Assigning a linear elastic material and parameters for a
standard tool steel, we optimize the strength-to-weight ratio under
a mechanical advantage setting where a torque is applied to a nut.

Our optimization co-optimizes a type one objective (Eq. 4), whose
integrand is set to the exponentiated distance of the Cauchy stress
to the von Mises failure surface [Schumacher et al. 2018], and a type
two objective (Eq. 5) integrating the model’s density. As we can see
in our supplemental video and in Fig. 17, our shape optimization
succeeds in significantly improving the mode’s strength, with the
handle hole geometry smoothly passing through several hexahedral
elements. Note that our parameterization preserves all tangencies.

Asymmetric Wheel and Fidget Spinner. While many different de-
signs for automobile wheels exist, they are typically rotationally
symmetric in order to ensure that they will spin stably around their
axis and not introduce vibrations. A combination of a type one
(Eq. 4 with integrand set to Ψ for linear elasticity) and a set of type
two objectives (Eq. 5; integrals over all monomials) enables the co-
optimization of the strength-to-weight ratio and mass distribution
of an asymmetric wheel design (see Fig. 1 middle and Fig. 15). As
we demonstrate in the accompanying video with scaled-down, 3D
printed wheels, the unoptimized input wobbles while our optimized
design spins stably. The reason for this difference is that the center
of mass (black spheres in the second column in Fig. 15) does not lie
on the spinning axis (9.9 mm off for a wheel of 40 cm diameter; 22
mm off when considering the mass properties of the wheel spokes
and hub only) for the unoptimized design. The parameterization
used in the optimization allows for the width of the spokes of the
wheel to vary, and the additional compliance term ensures that the
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Fig. 16. Motor Housing.
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Fig. 17. Wrench, Lampshade, and Fidget Spinner.

result is not only functional (CoM misalignment <0.1 mm) but also
optimal from a structural point of view (see stress visualizations
in Fig. 15). While structural considerations are less relevant in toy
design, the use of only type two objectives enables the design of
asymmetric spinning toys such as a fidget spinner that combines
(with some imagination) a teapot, a SIGGRAPH logo, and a bunny
in a unified design (see Fig. 17 bottom row).

Motor Housing. In this example, we optimize the compliance of
an aluminium housing for an electric motor, with cooling fins on the
outside. Tailored for manufacturing by casting or machining, it is of
paramount importance to keep the model undercut-free. Moreover,
to preserve its function and appearance, it is essential to enforce
rotationally symmetric changes. To this end, we parameterize the
thickness and width of the 6 “spokes” with a total of 4 parameter
(Fig. 16 params), constraining the normals of the surfaces that are
orthogonal to the symmetry axis in the initial design, to remain
orthogonal throughout optimizations. Relying on a type one objec-
tive with Ψ set to linear elasticity, we are able to reduce the overall
compliance of the model by 6.7%.

Lampshade. Targeting furniture design, we perform hyperelastic
rest shape optimization [Chen et al. 2014] on an initially flat lamp-
shade design that consists of six rotationally symmetric, curved
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Fig. 18. Topology Optimization.

blades protruding from the central unit containing the light fit-
ting (see Fig. 1 right and Fig. 17 middle row). In contrast to our
other examples, we parameterize the continuous outer surface of
the lampshade design (a total of 48 control points) and optimize the
model’s rest shape (type three objective, Eq. 6) such that the outer
surface deforms into a toroidal target shape under self-weight. Dur-
ing optimizations, we keep the curvy silhouette fixed, and constrain
the inner surface to move with the outer surface with a thickness
preservation constraint. To manufacture the optimized lampshade,
we use MoldStar 30 rubber. As can be seen in our accompanying
video and in Fig. 17, the lampshade deforms into the desired target
shape (max. target matching error is 16 mm before and 0.6 mm after
optimization). Because Schulz et al.’s technique [2017] does not scale
well with the number of parameters, shape optimizations like this
one would be difficult to perform with their method. For accurate
simulations, we rely on a Mooney-Rivlin model.

Topology Optimization. Although our framework does not cur-
rently support topology changes, we can mimic topology optimiza-
tion by optimizing a grid of 20 × 8 square holes (total of n = 160
shape parameters). The objective is to design a symmetric bridge
that minimizes compliance under a volume constraint. The initial
grid with boundary conditions, the optimized grid, and the deformed
states are shown in Fig. 18.
The side length li of any square hole is allowed to vary within

0 < li < 1. The true volume fraction of a geometric cell is given by
Vi = 1 − l2i . To drive parameters towards extremal values, we use
Ṽi = V

2/3
i to penalize the volume of intermediate cells relative to

their stiffness, and constrain 1
n

∑
i Ṽi = 0.7. The simulation uses an

80 × 32 grid, so each cell is meshed by a 4 × 4 block of elements,
some of which appear and disappear as walls move through them.
The result is in line with conventional topology optimization results.
Moreover, this demonstrates the capability of our method to deal
with large numbers of optimization parameters as well as very thin
model sections.

Performance. All simulations and optimizations were performed
on a single core of an Intel Core i7-8700. Tab. 1 provides data about
the complexity ofmodels and timings of optimization and simulation
routines. We rely on linear shape functions in all our simulations.

8 CONCLUSION
We have devised a generic shape optimization that enables the
solution of a wide range of computational design problems directly
on a CAD representation. While we have developed our hierarchical
integration and extended finite element formulation with an eye
on shape optimization, we see applications beyond the discussed

Table 1. Simulation and Optimization Statistics Columns from left to
right: name of the demonstration; resolution of simulation grid; number of
integration subvolumes (#SV); number of shape parameters (#P); number of
NURBS patches in the CADmodel (#S); time per iteration or total simulation
time (Aircraft) in seconds (t); number of iterations (i).

Demonstration Grid #SV #P #S t #i
Aircraft 160x40x160 15,840 - 679 104 -
Wrench 32x4x12 926 5 54 8.0 64
Fidget Spinner 16x16x1 161 12 82 3.2 28
Asym. Wheel 10x20x20 1,652 14 154 70 31
Motor Housing 30x30x18 6,628 4 557 86 43
Lampshade 26x26x38 1,954 48 6 352 17
Topology Opt. 80x1x32 2,143 160 653 50 33

context. For example, because our simulation of CADmodels is fully
differentiable, it is well suited for applications in geometric deep
learning [Koch et al. 2019].

Our proposed change of basis of enriched shape functions makes
it straightforward to turn an existing FEM implementation into one
that supports strong discontinuities in cut elements. Moreover, it
makes Hessian computations for cut elements significantly more
efficient, and leads to a basis that preserves not only the Kronecker
delta but also the partition of unity property. A change of basis as
used herein would be beneficial in XFEM applications in general.

Furthermore, we introduced a parameterization Lagrangian that
enables optimization with a set of parameters that does not lie on
the constraint manifold defined by a user-specified set of constraints.
Implicitly enforcing the first-order optimality of this Lagrangian
in shape optimizations, we can compute analytical gradients of
the continuous projection of the parameters onto the closest set of
valid values. We see utility of this projection in other computational
design problems and beyond.

Limitations & Future Work. While our integration schemes and
XFEM formulation supports the use of relatively coarse hexahe-
dral meshes, Dirichlet conditions cannot be fulfilled exactly along
the boundary of the domain. Although we have not experienced
any difficulties in choosing a stabilization parameter that prevents
locking or instabilities, striking for the right balance between ful-
fillment of displacement constraints and elastic response may be
challenging. If the fulfillment of constraints is unsatisfactory, an
increase in resolution, hence a decrease of computational efficiency,
is unavoidable. While we rely on an axis-aligned hexahedral grid
for increased performance, the support of conforming elements in
cells that intersect the boundary of a constrained domain, or an
adaptive refinement as common in Finite Cell (FC) methods are
valid alternatives left for future work.

Another exciting future avenue is the extension of our strong
discontinuity formulate to weak discontinuities, enabling applica-
tions in dual or multimaterial modeling [Vidimče et al. 2013]. For
example, Nitsche’s method could be used to treat discontinuities in
the deformation gradient.

Finally, our shape optimization does not handle topological changes
in the relationships between neighboring NURBS patches. Enforcing
their preservation with constraints, we demonstrate with our results
that large changes to shape parameters are possible. While it is of-
ten desirable to preserve these relationships, there are applications
where topological changes are beneficial, constituting an exciting
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future direction. A differentiated CAD kernel could be useful in this
context [Mykhaskiv et al. 2018].
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