
Vibration-Minimizing Motion Retargeting for Robotic Characters

SHAYAN HOSHYARI, Disney Research and University of British Columbia
HONGYI XU, Disney Research
ESPEN KNOOP, Disney Research
STELIAN COROS, ETH Zurich
MORITZ BÄCHER, Disney Research

Fig. 1. We present a method for retargeting fast and dynamic animations onto physical robot characters, where the motor trajectories are optimized in
order to suppress unwanted structural vibrations and match the artistic intent as closely as possible. We demonstrate our approach on a range of examples,
including, as seen here, a boxing sequence with fast punches, blocks, and dodges.

Creating animations for robotic characters is very challenging due to the
constraints imposed by their physical nature. In particular, the combination
of fast motions and unavoidable structural deformations leads to mechanical
oscillations that negatively affect their performances. Our goal is to auto-
matically transfer motions created using traditional animation software to
robotic characters while avoiding such artifacts. To this end, we develop an
optimization-based, dynamics-aware motion retargeting system that adjusts
an input motion such that visually salient low-frequency, large amplitude
vibrations are suppressed. The technical core of our animation system con-
sists of a differentiable dynamics simulator that provides constraint-based
two-way coupling between rigid and flexible components. We demonstrate
the efficacy of our method through experiments performed on a total of five
robotic characters including a child-sized animatronic figure that features
highly dynamic drumming and boxing motions.

CCS Concepts: • Computing methodologies → Physical simulation.

Additional KeyWords and Phrases: animation retargeting, robotic characters,
dynamics, model reduction, vibration minimization, adjoint method

Authors’ addresses: Shayan Hoshyari, Disney Research and University of British
Columbia; Hongyi Xu, Disney Research; Espen Knoop, Disney Research; Stelian Coros,
ETH Zurich; Moritz Bächer, Disney Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2019/7-ART102 $15.00
https://doi.org/10.1145/3306346.3323034

ACM Reference Format:
Shayan Hoshyari, Hongyi Xu, Espen Knoop, Stelian Coros, and Moritz
Bächer. 2019. Vibration-Minimizing Motion Retargeting for Robotic Char-
acters. ACM Trans. Graph. 38, 4, Article 102 (July 2019), 14 pages. https:
//doi.org/10.1145/3306346.3323034

1 INTRODUCTION
Ever since Leonardo da Vinci’s times, children and adults alike
have been fascinated by mechanical systems that are designed to
generate natural movements. Over the centuries, da Vinci’s first
automatons—the Mechanical Lion and Knight—have evolved into
lifelike animatronic figures that are routinely deployed in museums,
theme parks and movie studios across the world. And today, thanks
to the advent of affordable, easy-to-use digital fabrication technolo-
gies and electromechanical components, the process of creating
compelling robotic characters is easily accessible to anyone.
Keyframing techniques are commonly used to breathe life into

animatronic characters. While these techniques are conceptually
identical to those employed in Computer Animation, creating vi-
brant motions for real-world characters introduces unique chal-
lenges. These challenges stem from the physical characteristics of
an animatronic figure’s design. It is easy, for example, to design
virtual characters that have as many degrees of freedom as needed.
The design of their robotic counterparts, on the other hand, must
balance motion versatility against the constraints imposed by the
size, weight and placement of its mechanical components. Further-
more, the motions of real-world characters are strictly bound to the
laws of physics. While the idealized limbs of a virtual character are
perfectly rigid, for example, structural deformations are unavoid-
able in physical systems. Unfortunately, the combination of dynamic

ACM Trans. Graph., Vol. 38, No. 4, Article 102. Publication date: July 2019.

https://doi.org/10.1145/3306346.3323034
https://doi.org/10.1145/3306346.3323034
https://doi.org/10.1145/3306346.3323034


102:2 • Hoshyari, Xu, Knoop, Coros, and Bächer

motions, weighty components and structural deformations lead to
large-scale vibrations. These mechanical oscillations are due to the
cyclic transfer between kinetic and potential deformation energy,
and they negatively impact the character’s performance.
To combat vibrations, mechanical structures are typically engi-

neered to be as stiff as possible. While such designs work well in
industrial settings, they are heavy and bulky, and therefore ill-suited
for many types of robotic characters. An alternative is to slow down
the motions that are performed until they approach the quasi-static
regime. This, of course, is also undesirable. Animators are there-
fore left with only one option: endlessly tweaking motions in a
painstaking, trial-and-error workflow. The goal of our paper is to
fundamentally rethink this process through a physics-based motion
retargeting method that is tailored for physical characters.

We present a novel approach to creating compelling motions for
real-world characters. The input to our method consists of motions
that are authored using standard animation software such as Au-
todesk’s Maya. Leveraging a simulation model that balances speed
and accuracy, the computational method we present generates an
optimized motion that deviates from the input as little as possible
while minimizing displeasing artifacts that arise from structural
vibrations. We demonstrate the efficacy of our method through a
variety of lightweight physical structures that generate complex
motions. Succinctly, our technical contributions are as follows:

• Dynamics-aware motion retargeting for physical characters.
• Continuous space-time optimization for computationally sup-
pressing structural vibrations.

• A general formulation of constrained multibody dynamics
with two-way coupling between rigid and elastic components.

• Evaluations of our system through lively animations that are
retargeted to complex robotic characters.

2 RELATED WORK
Computational Design and Fabrication. Fueled by advances in

digital fabrication technologies, the past five years have seen a surge
of research projects aimed at bringing animated characters to the
real world. For example, a large body of work has targeted kinematic
mechanisms that are specifically designed to create compelling
motions [Bächer et al. 2015; Ceylan et al. 2013; Coros et al. 2013; Song
et al. 2017; Thomaszewski et al. 2014; Zhang et al. 2017], structures
that create motions by virtue of quasi-static deformations [Bern
et al. 2017; Gauge et al. 2014; Megaro et al. 2017; Skouras et al.
2013; Xu et al. 2018], increasingly complex robotic creatures that
locomote using legs and wheels [Geilinger et al. 2018; Ha et al. 2017;
Megaro et al. 2015], and even devices that are designed to fly [Du
et al. 2016; Umetani et al. 2014]. The technique we introduce here
complements this body of work. In particular, we focus our attention
on physical systems that are composed of both rigid and deformable
elements, and are expected to perform very dynamic motions. This
setting introduces a challenge that has not yet been addressed in
the computer graphics community, namely that of reasoning about
visually salient low-frequency large amplitude structural vibrations.
Closest to our work is the recent method of [Chen et al. 2017], which
accurately models the dynamics of elastic bodies in contact with the
environment. However, while they target systems which are entirely

passive, our method addresses deformation- and dynamics-aware
active control of actuated systems such as animatronic characters.

Trajectory Optimization. Trajectory optimization, or spacetime
constraints, is a general methodology often employed for control
problems. Using this methodology, motion synthesis is formulated
as an optimization problem where the equations of motion are
treated as soft or hard constraints, and control forces that exploit
the natural dynamics of the system are generated as output. In com-
puter animation, many research works have focused on developing
trajectory optimization techniques that target specific systems such
as rigid-body simulations [Popović et al. 2003], fluids [McNamara
et al. 2004; Treuille et al. 2003], deformable bodies [Barbič et al. 2009;
Li et al. 2014; Schulz et al. 2014], human and animal motions [Lee
et al. 2018; Si et al. 2014; Tan et al. 2011], etc. Different from these
prior works, we seek an optimal control formulation to create mo-
tions for physical robotic characters that are composed of both rigid
and compliant mechanical components. The lightweight, compliant
nature of such physical designs demands techniques which can rea-
son about deformations and mechanical vibrations. This problem
setting therefore differentiates our work from research efforts aimed
at robotic creatures that are mobile, but assumed to be free of struc-
tural deformations [Geilinger et al. 2018; Megaro et al. 2015]. It is
worth noting that the engineering community is actively studying
the problem of vibration suppression [Economou et al. 2000; Huer-
tas and Rohal’-Ilkiv 2012; Pappalardo and Guida 2018; Zhou et al.
2002], but the focus there is on specific structures and mechanisms
in isolation. Our goal, in contrast, is to develop a flexible framework
that can be applied to a variety of animatronic figure designs.

Dynamic Simulation and Adjoint Method. The area of physics-
based modeling has a rich history within computer graphics. For
our problem domain, techniques that couple different types of sim-
ulation models are highly relevant, since the physical characters
we consider are multi-body systems composed of both rigid and
flexible components. In particular, our simulation model, which
accurately captures two-way coupling effects, is derived by com-
bining concepts developed for constraint-based simulation [Baraff
1996; Tournier et al. 2015], volumetric simulation of elastic bodies
undergoing large deformation [Smith et al. 2018] and subspace for-
mulations [An et al. 2008; Barbič and James 2005; Hauser et al. 2003;
James and Pai 2002]. The latter is particularly important: because we
use forward simulations in the inner loop of a motion optimization
scheme, computational efficiency and predictive power are both of
utmost importance. Unlike prior works either on reduced character
simulation driven with predetermined rigged motion [Galoppo et al.
2009; Kim and James 2012; Xu and Barbič 2016] or full space simula-
tion with coupling between skeleton and deformable skin [Kim and
Pollard 2011; Liu et al. 2013; Shinar et al. 2008], we accurately model
the two-way coupling between rigid body dynamics and reduced
flexible body motion. Our simulation-based motion optimization
technique uses the adjoint method to compute gradients [Lions
1971]. In this sense, our work is related to others that employe the
discrete adjoint method for time-dependent problems, such as the
control of fluids [McNamara et al. 2004], particle systems [Woj-
tan et al. 2006], or soft deformable bodies [Barbič et al. 2009] in
computer animation. Our method, however, is tailored to physical

ACM Trans. Graph., Vol. 38, No. 4, Article 102. Publication date: July 2019.



Vibration-Minimizing Motion Retargeting for Robotic Characters • 102:3

characters. We therefore formulate constrained time-dependent Dif-
ferential Algebraic Equations (DAEs) to model mechanical joints
and the two-way coupling between rigid and elastic bodies. To de-
couple our adjoint formulation from the underlying time-stepping
scheme, we use the continuous-in-time adjoint formulation for the
governing DAEs, the theory of which is thoroughly reviewed in [Cao
et al. 2003]. While related to the recent approach of Pappalardo and
Guida [2018], we note that our simulation and motion optimization
formulations scale to physical systems that are significantly more
complex.

3 OVERVIEW
Given an animation sequence created by an artist, in the form of
time-varying motor angles for the rig joints, the goal of our work
is to retarget the motion onto a physical robotic character while
avoiding undesirable vibrations due to system dynamics. We can
extract the motor angles from the input animation sequence and
replay them on the physical robot. However, this may often lead to
substantial unwanted vibrations e.g. due to unavoidable compliance
in the components of the physical robot. This can cause the physical
robot to deviate significantly from the target animation sequence
(cf. supporting video). In this work, we provide a computational tool
that optimizes the motor trajectories in order to suppress vibrations,
while matching the intended animation as closely as possible.

Our robotic characters are multi-body systems consisting of both
rigid components, such as mechanical joints andmotors, and flexible
bodies that will deform under dynamic motions (see Fig. 2). Rigid
components are connected to each other using mechanical joints,
and flexible bodies are coupled to adjacent rigid components. To
physically simulate the dynamics of the system, we timestep all sub-
systems together in a unified integration scheme, while accurately
modeling the two-way coupling effects between subsystems. The
deformations of flexible bodies are moderate when observed from
a coupled rigid body, and by exploiting this, we achieve fast and
accurate simulation of the robotic characters via modal reduction
techniques.
In the following sections, we first describe the constituent el-

ements of the simulation, including elastodynamics, rigid body
dynamics, and constraints. We then present a unified integration
scheme for dynamics simulation (Sec. 4). Fast subspace simulation
of the robotic characters is presented in Sec. 5, where we detail how
the rigid-body dynamics are integrated in global coordinates while
the reduced deformable simulation are solved in the local frame of
a coupled rigid body. Using our dynamics simulator, we formulate
a space-time optimization on motor controls in order to suppress
vibrations using a continuous adjoint method (Sec. 6). In Sec. 7, we
validate our simulation model, present two simple and illustrative
examples, and demonstrate the efficacy of our optimization method
by retargeting five rich motions to complex characters.

4 CONSTRAINED DYNAMICS
To simulate our robotic characters (compare with Fig. 2), we use an
elastodynamics model to represent flexible parts of our components,
and rigid bodies to represent parts with a high enough stiffness.
The rigid bodies, in turn, are connected to one another with either

Rigid component

Hinge jointBall joint

Motor

Rigid component

Flexible component

Hinge joint

Fig. 2. Simulating Robotic Characters To simulate the dynamic behavior
of our robotic characters, we represent flexible parts of components with
deformable bodies (in green), and sufficiently stiff parts with rigid bodies
(in blue). To enforce two-way coupling constraints between deformable and
rigid bodies, and mechanical constraints between pairs of rigid bodies, we
formulate a unified constrained dynamics model. We support assemblies
with loops, and components with a wide range of geometries, masses, and
stiffnesses.

mechanical joints such as hinges or ball-and-sockets, or standard
rotational motors.

4.1 Elastodynamics
The motion of a 3D point x(X, t) on a deformable body, located at
the reference location X at time t0, is governed by the equations of
motion

ρ Üx(X, t) − ∇X · PT (X, t) − ρ g = 0 (1)
where the density ρ may vary within the reference domain Ω. Inte-
grated over Ω, the divergence of the transposed first Piola-Kirchhoff
stress tensor P results in internal elastic forces that counteract iner-
tia and gravity g.

Spatially discretizing the components with tetrahedral elements
and interpolating their nodal displacements with Lagrange shape
functions, we form the standard first-order ODE

Ûu = v and MÛv = f(u, v), (2)

where u, v ∈ R3n collect the displacements and velocities of the
n nodal degrees of freedom. The forces f = −fdamp − fint + fext
combine internal forces fint, external forces fext that we set to gravity,
and Rayleigh damping fdamp (u, Ûu) =

(
αM + βK(u)

)
Ûu with mass

matrixM and tangent stiffness K. Our components undergo large
rotations, and deformations are moderate even with our relative
coordinate formulation (see Sec. 5). Experimenting with elements
and hyperelastic models of increasing order and complexity, we
observed quadratic elements and the Neo-Hookeanmodel to provide
the best tradeoff between model complexity and accuracy. Linear
elements failed to capture bending deformations of our components.
Above, we underline quantities for which the same standard letters
are common in rigid body dynamics (where we overline them).

4.2 Rigid Body Dynamics
To transform points in body coordinates into global coordinates,
we characterize states of bodies with their orientation R(t) and
position c(t). Columns of rotations R represent a body’s frame axes
[rx , ry , rz ], and the position of its center of mass c the frame center
at time t . The state of a body is governed by the first-order ODE

ACM Trans. Graph., Vol. 38, No. 4, Article 102. Publication date: July 2019.



102:4 • Hoshyari, Xu, Knoop, Coros, and Bächer

form[
Ûc
Ûq

]
=

[
w
Qω

]
and

[
M

Ic

] [
Ûw
Ûω

]
=

[
f

τ c − [ω]×Icω

]
(3)

of the Newton-Euler equations where w is the linear and ω the
angular velocity, andM the mass and Ic = RIrbRT the moment of the
inertia of the body, with Irb referring to the constant angular mass in
body coordinates. To reduce required normalization, we represent
rotations with quaternions q, and use the 4×3-transformationmatrix
Q(q) [Witkin and Baraff 1997]. The net force f acting on the body
includes gravity, and for the sake of brevity, we absorb the term
[ω]×Icω into the net torque τ c in what follows. [ω]× is the matrix
form of the cross-product withω.

4.3 Constraints
We have two types of constraints in our dynamic system: mechani-
cal joints that couple rigid bodies pairwise, and interfaces between
deformable and rigid bodies where degrees of freedom of the tetra-
hedral simulation mesh are moving as-rigidly-as-possible with the
attached bodies.

Mechanical Joints. To formulate constraints between pairs of rigid
bodies, we attach rigid frames to each body, then transform them
with their respective orientations and positions. Asking their centers
or axes to coincide or remain orthogonal to one another (see, e.g.,
[Coros et al. 2013]), we formulate constraints

C(t , c(t), q(t)) = 0 (4)

that depend on the orientations and positions of the bodies due to
these transformations. For motors, we actively change the relative
positions of the two frames. Hence, we have a direct dependence
on t .

At time t0 At time t
Rigid-deformable

interface
Rigid body

Deformable body

(undeformed)

Rigid body

Deformable body(deformed)

Fig. 3. Coupling Deformable to Rigid Bodies To couple deformable to
rigid bodies, we define a frame on each body, asking their centers and axes
to be equal at time t . To define a center on the rigid body, we extract the
“centroid” X̂ of the area-weighted interface nodes Xi at t0, transforming
its location to rigid body coordinates. At time t , we then ask the trans-
formed center to equal the “centroid” of the deformed interface nodes x̂(t ).
To extract the rotation between the undeformed and deformed interface,
we compute the transformation that maps vectors Di = Xi − X̂ to their
deformed configuration di = xi − x̂. We then ask the orientation of the
frame on the rigid body to equal the rotational part of this transformation.

Coupling Deformable to Rigid Bodies. To couple deformable to
rigid bodies, we use a similar mechanism, asking frames on each
body to coincide in global coordinates (compare with Fig. 3). How-
ever, because interface nodes on the deformable body do not remain
rigid, the formulation of coupling constraints is more involved. We
rely on a similar approach as described by Barbič and Zhao [2011].
However, unlike them, we do not assume our input assemblies to
be hierarchical. Due to loops in our robotic character assemblies,
deformable bodies can be coupled to more than one rigid body (com-
pare with Fig. 2). Moreover, rather than using a penalty method [Bar-
bič and Zhao 2011; Kim and James 2012], we enforce our coupling
with constraints which constitutes a more physically accurate model
besides enabling the stable integration without the necessity of a
tedious parameter tuning.

In a first step, we extract frame centers on each body that we seek
to coincide throughout the motion. To this end, we compute the
area-weighted average X̂ and x̂(t) of nodes on the interface at rest
and time t , respectively. We then ask the two “centroids” to coincide
in the local frame of the rigid body

R(t0)T (X̂ − c(t0)) − R(t)T (x̂(t) − c(t)) = 0. (5)

To constrain the relative orientations of the two bodies, we first
find the optimal linear transformation A(t) that transforms dif-
ference vectors Di = Xi − X̂ to their deformed configuration
di (t) = xi (t) − x̂(t) by minimizing the sum of squared differences∑
i ŵi (ADi − di )2, weighted with the normalized interface area in-

cident to node i [Müller et al. 2005]. We then ask the orientations of
the interface on the deformable and rigid body to coincide

R(t)R(t0)T − PD(A(t)) = 0, (6)

where we use the polar decomposition (operator PD) to extract the
rotational part of the transformation A. To minimize the number of
constraints, we enforce the orthogonality between columns of the
combined rotation R(t)R(t0)T and the axes of the rotational part of
A with three dot product constraints (compare with Fig. 3).

Because the deformed nodes on the interface depend on the dis-
placement, our combined constraints

C(t , c(t), q(t), u(t)) = 0 (7)

depend on u as well as the rigid body locations and orientations.
While an automated extraction of interfaces would be possible,

we consider them user input. This has the advantage that only the
rigid bodies’ mass properties but not their exact geometry have
to be known to ensure simulation accuracy. Note that per-vertex
constraints are not an alternative, as they can cause locking artifacts
in reduced simulations.

Enforcing Constraints. To enforce constraints, we form constraint
Jacobians Cc, Cq, and Cu w.r.t. locations and orientations of rigid
bodies, and displacements of our deformable bodies. We then add
constraint forces CTc Λ and CTu Λ to f and f , respectively. Λ is a vector
of Lagrange multipliers (one per constraint). Note that constraint
torques (CqQ)TΛ require a transformation with matrix Q before we
add them to τ c. By construction, these generalized forces do not
do any work on the system. Hence, they do not add nor remove
energy [Witkin and Baraff 1997].

ACM Trans. Graph., Vol. 38, No. 4, Article 102. Publication date: July 2019.



Vibration-Minimizing Motion Retargeting for Robotic Characters • 102:5

To form Jacobians of our coupling constraints, we need to take
derivatives of the polar decomposition. We refer the reader to the
appendices of Barbič and Zhao [2011] and Pérez et al. [2015] for
derivations of the first and second derivative of operator PD. While
we only need first derivatives for simulation, second derivatives are
required for gradient computations during optimization (see Sec. 6).

Unified DAE. To form the system of DAEs that describes the
dynamics of our robotic characters, we combine the deformable and
rigid body ODEs (Eqs. 2 and 3)

ÛU − TV = 0 with T(U) = diag (E,Q(q),E) (8)

M ÛV − F − (CUT)TΛ = 0 with M(U) = diag
(
M, Ic(q),M

)
(9)

with the algebraic equations C = 0 into one unified system. In
above equations, we collect the positions and orientations of the
rigid bodies, and the displacements of the deformable bodies, in
a generalized position vector U = [c q u]T , and corresponding
velocities in a generalized velocity vector V = [w ω v]T . Trans-
formation matrix T relates velocities to the time derivatives of
positions, and mass matrixM relates accelerations to generalized
F(U,V) = [f τ c(c, q,ω) f(u, v)]T and constraint forces (CUT)TΛ.
The torque does not only depend on the locations, but also on
the the orientations and angular velocities, as we consider torques
[ω]×Icω to be part of τ c. Matrices E are identities of appropriate
but different sizes.

4.4 Time Discretization
A direct time integration of above DAEs is not possible. This is
because our constraints C = 0 do not directly depend on velocities,
hence neither an explicit nor an implicit discretization schemewould
lead to a solvable system. To enforce our constraints, we have two
options: we can either use the first or second time-derivative, ÛC = 0
or ÜC = 0, respectively. The use of the second-time derivative results
in a semi-explicit, index-1 DAE [Ascher and Petzold 1998; Brenan
et al. 1996] that we can discretize and solve with either an explicit or
implicit scheme. However, because our components are flexible but
very stiff, high-order Runge-Kutta (RK) is unstable even if we only
time-stepped the nonlinear deformable body ODE (see supplemental
material; Sec. 3). Hence, an explicit scheme is not an option. We rely
on velocity constraints ÛC+αC = 0,α > 0, where we add Baumgarte
stabilization [Baumgarte 1972] to avoid numerical drift in positions,
resulting in the pure, index-2 DAE [Ascher and Petzold 1998; Brenan
et al. 1996]

G =

E

M −(CUT)T



ÛU
ÛV
Λ

 −


TV
F

−Ct − CUTV − αC

 = 0

(10)
that we can only (directly) discretize and solve with an implicit
scheme. This is because the constraints are independent of the al-
gebraic variables Λ. Due to the dependence of the motor angle on
time t , the partial time-derivative of our constraints, Ct , is non-zero
for constraints involving motors.
While a Backward Difference Formula (BDF) discretization of

either the semi-implicit, index-1 or the pure, index-2 DAE is stable
and would fulfill our requirements, the index-2 is preferable as it

does not require second derivatives of our constraints for simulation,
or third derivatives for gradient computations for our optimization
(see Sec. 6). The latter would be tedious to derive and implement
due to the polar decomposition in our coupling constraints.

To avoid numerical damping, we discretize our nonlinear system
of DAEs, G(t , S(t), ÛS(t)) = 0, with state vector S = [U V Λ]T and its
time-derivative ÛS = [ ÛU ÛV ÛΛ]T , with a BDF-2 scheme [Ascher and
Petzold 1998]

(
Un−Ûp

∆t̂

)
− T(Un )Vn

M(Un )
(
Vn−V̂p
∆t̂

)
− F(Un ,Vn ) − [CU(tn ,Un )T(Un )]T Λn

Ct (tn ,Un ) + CU(tn ,Un )T(Un )Vn + αC(tn ,Un )


= 0.

In the above equations, Sn = [Un Vn Λn ]T is the unknown next
state, Ŝp is set to the combination of the two previous states − 4

3Sp +
1
3Sp−1 that are known, and the time step ∆t̂ to 2

3 of the chosen
step size ∆t (set to 0.5ms for all our demonstrations). We assume
the system to be at rest at time t0, and set the initial conditions S0
accordingly (we use one BDF1 step at the start). To solve the resulting
nonlinear equations for the next state Sn , we use Newton’s method
where we linearize the system at the current iteration.

5 FAST SIMULATION OF ROBOTIC CHARACTERS
Our dynamic simulation scheme, as described in the previous sec-
tion, enables us to accurately simulate our robotic characters when
actuating the motors according to the artist-specified motion pro-
files. Nevertheless, simulations are slow for our complex characters
due to the thousands of deformable Degrees Of Freedom (DOFs). It
becomes even prohibitively expensive as we seek to optimize the
motor trajectories. This is because every objective evaluation dur-
ing line search, and every objective gradient evaluation, requires a
simulation of the entire animation.

To enable fast and accurate simulation of our characters, we rely
on established subspace methods [An et al. 2008; Barbič and James
2005]. However, our flexible components undergo large rotations,
for which modal models are poorly suited. Taking a closer look at
our flexible bodies, we observe that their motion is passive, driven
by the inertial forces that are due to transformations of coupled
rigid bodies. Moreover, their deformations are moderate w.r.t. the
body coordinates of the latter. Inspired by multi-domain reduced
simulation [Barbič and Zhao 2011], we therefore seek to integrate
the reduced deformable dynamics in relative coordinates of one of
the coupled rigid bodies, while time-stepping the rigid body motion
in global coordinates (compare with Sec. 4). Before we discuss our
reduced formulation, we describe the full simulation in relative
coordinates.

Full Simulation in Relative Coordinates. For every deformable
body, we choose the adjacent rigid body closest to the assembly
“root” as a reference. While simulations are largely insensitive to
this choice, bodies closer to the “root” are often the primary driver
of the motion of a flexible component. As discretized in Sec. 4, a
point X ∈ R3 in the reference domain Ω is mapped to its deformed
position x(X, t) ∈ R3 via interpolation of the nodal displacements

ACM Trans. Graph., Vol. 38, No. 4, Article 102. Publication date: July 2019.



102:6 • Hoshyari, Xu, Knoop, Coros, and Bächer

u ∈ R3n

x(X, t) = X + u(X, t) u(X, t) = Φ(X)u(t), (11)

where Φ ∈ R3×3n is the concatenation of 3 × 3 diagonal matrices
set to the identity times the quadratic basis function of the corre-
sponding node.

At time t0 At time t

Fig. 4. Relative Coordinate Formulation.We discretize deformable parts
of components relative to one of the coupled rigid bodies.

Discretized relative to one of the coupled rigid bodies (compare
with Fig. 4), the reference point Xl ∈ R

3, in local coordinates of the
coupled body, is transformed to its global deformed configuration
according to

x(Xl , t) = R(t) [Xl + Φl (Xl )ul (t)] + c(t), (12)

with the displacements ul and the basis Φl defined w.r.t. the lo-
cal frame. To increase readability, we drop the subscript l in the
following.
Starting from Eq. 1 and omitting arguments in the interest of

brevity, we formulate the weak form of the equations of motion∫
Ω
ΦT RT (ρ Üx − ∇X · PT − ρ g) dX = 0 =⇒∫

Ω
ρ ΦT RT Üx dX =

∫
Ω
ΦT RT ∇X · PT dX +

∫
Ω
ρ ΦT RT g dX, (13)

where we transform the equations to local coordinates of the cou-
pled body bymultiplyingwithRT . The integral on the left represents
inertial forces (generalized mass times acceleration), and the two
integrals on the right represent internal elastic and external grav-
itational forces, respectively. Plugging the second time derivative
of the deformed configuration in relative coordinates (Eq. 12) into
the integral on the left (see App. A for generalized mass matrices
M1-M6; Sec. 2 in our supplemental material for a detailed deriva-
tion), we form the inertial forces that correspond to the linear and
angular acceleration of our rigid bodies, and the accelerations of
our deformable bodies

Mω Ûω Mw Ûw MÛv (14)

Mω (q, u) = −
(
M1 +M2(u)

)
RT Mw(q) = M3RT , (15)

together with the fictitious centrifugal and Coriolis forces

fcen(q, u,ω) =
∑
j

(
ωT R

(
M4j +M5j (u)

)
RTω ej

)
(16)

−
(
M6 +Mu

)
(ω ·ω)

fcor(q,ω, v) = − 2M2(v)RTω, (17)

that are due to our relative coordinate formulation. ej is the j-th
column of the identity matrix.
It remains to discuss the first and second integrals on the left.

Because we rely on the Green strain (invariant under rigid body

motion) and time-step the deformable bodies in their respective
relative coordinates, we can discretize the internal and damping
forces for each individual deformable body as usual (Sec. 4). Our
constant gravity vector g is defined in absolute coordinates. Hence,
we rotate it to relative coordinates before we evaluate the third
integral, setting the gravitational forces of the deformable body to
fgrav(q) = M3RT g.
In summary, to time-step deformable bodies in relative coordi-

nates, we replace the deformable body ODE, M ÛV − F = 0, in our
simulation DAE (Eq. 8) with the relative formulation

M
Ic

Mw Mω M




Ûw
Ûω
Ûv

 =


f
τ c
f

 (18)

where f is set to the forces −fcen − fcor − fdamp − fint + fgrav.
Our generalized mass matrices are either constant (M, M1, M3,

M6), consist of constant blocks (M4), or are or consist of blocks
that are linearly dependent on the displacements or velocities of
our deformable bodies (see App. A). Hence, they are well-suited for
precomputation.
Note that our mass matrices are similar to the ones derived by

Barbič and Zhao [2011] (they define 7 separate matrices while we
reduce them to 6). However, our relative formulation differs in
two fundamental ways: (1) their multi-domain simulation works
on deformable bodies only, time-stepping each body in relative
coordinates of the deformable subdomain of its parent. Hence, their
method only works on hierarchical input and does not support loops.
Because we represent deformable bodies relative to a rigid body,
and time-step all of our rigid bodies in global coordinates, we can
couple deformable bodies to multiple rigid bodies, and thus support
loops in our robotic character assemblies. (2) In their system, they
extract frame rotations and accelerations from the previous state
when integrating their inertial forces. Hence, they integrate the
latter explicitly. In contrast, our inertial forces depend on the next
state of both our rigid and deformable bodies, enabling stable and
accurate integration with an implicit scheme.

Reduced Simulation in Relative Coordinates. With our relative
formulation, we can express local deformations of individual de-
formable bodies in a subspace while keeping the accuracy required
for our retargeting. Precomputing modes Ur ∈ R3n×r , r ≪ 3n, we
time-step with the same system (Eq. 18) as for a full simulation,
projecting it onto and solving in the reduced space instead. To com-
pute constant (blocks of) mass matrices for our reduced system, we
set the basis Φ to the reduced basis ΦUr (see App. A; Sec. 1 in our
supplemental material for derivations). Precomputing the reduced
mass matrices, we can then integrate all of our inertial and grav-
itational forces in O(r2) flops, without the need for computations
in full space. We rely on cubature [An et al. 2008; von Tycowicz
et al. 2013] for efficient evaluations of reduced internal forces and
tangent stiffnesses.
To construct a subspace for our constrained deformations, we

opt for a PCA basis (see Sec. 7 for validations and comparisons
to modal derivatives): we first run full simulations of our robotic
characters, then perform mass-PCA [Barbič and James 2005] on
the local displacements of each deformable component. It is worth

ACM Trans. Graph., Vol. 38, No. 4, Article 102. Publication date: July 2019.



Vibration-Minimizing Motion Retargeting for Robotic Characters • 102:7

pointing out that this defines subspaces for individual components
instead of a single subspace for the entire character. To ensure proper
transfer of generalized forces between bodies, we add the first 6
linear modes, responsible for rigid body motion, when forming Ur .

6 OPTIMIZATION
To retarget artist-specified input onto our physical robots, we seek
to minimize differences between simulated and target states, putting
a priority on the suppression of visible vibrations of large amplitude.
To do so, we parameterize and optimize the time-varying motor
angles, and solve for their optimal control.

Due to the flexibility in our components, our robots would deform
under gravity even if we slowed down the target animation to the
degree where inertial forces are negligible. Because we cannot hope
to remove deformations that are due to gravity, we first perform
quasi-static solves with motor angles set according to our input
animation. Performing these quasi-static solves at the same time
intervals as used for dynamic simulations, we define the target states
S̃(t). In the remainder, we will discuss howwe minimize the distance
of simulated S(t) to target states S̃(t).

Parameterization. We represent the time-varying angle θi (t , pi )
of motor i (hereafter referred to as i’s motor profile) with a spline
interpolation, parameterized with control points pi . Because we re-
quireC2-continuity to prevent infinite motor torques in simulations,
we rely on B-Splines. We initialize the control points by fitting the
parameterized profiles to the input animation, collecting the spline
parameters of all motors in a global parameter vector p.

Retargeting Objective. The current state of a dynamic system de-
pends on the entire history of previous states. To effectively suppress
vibrations, and enable the formation of calibrated counterbalancing
motion (cf. Single Motor Single Rod example, Fig. 7), it is essential to
penalize integrated differences. Hence, a first objective that comes
to mind minimizes deviations of the generalized position vector U
from its target, integrated over the interval [0,T ].
Observing that deformable bodies do not deform if the relative

positions and orientations of coupled rigid bodies remain constant
over time, it follows that it is sufficient to track the target matching
performance of the rigid bodies only. However, because vibrations
tend to “accumulate” (cf. Single Motor Two Rods example, Fig. 8),
it is imperative to track their performance in absolute instead of
relative coordinates. In summary, we ask the simulated positions of
our rigid bodies to remain as-close-as-possible to their target state
in global coordinates

дpos(t ,U(p)) =
1
2
∥c(t ,U(p)) − c̃(t)∥2 . (19)

To penalize differences between simulated and target orientations,
we introduce a second objective

дori(t ,U(p)) =
1
2

(
(rx · r̃z )2 + (ry · r̃z )2 + (rz · r̃x )2

)
(20)

where the r-axes are the columns of the simulated and target ro-
tations, R(t ,U(p)) and R̃(t), of a rigid body. By integrating these

differences over time, we formulate our retargeting objective

G(U(p)) =
∫ T

0
д(t ,U(t , p)) dt (21)

д(t ,U(t , p)) =
∑
k

wk
pos(t)д

k
pos +w

k
ori(t)д

k
ori (22)

where the weights,wk
loc(t) andw

k
ori(t), for body k provide the user

with a means to emphasize particular fractions of an animation (see
our Dancer for an example, Figs. 9 and 10). Note that these weights
are constant in the sense that no time-derivatives are required for
numerical optimization.

Discussion. To avoid the “accumulation” of global and visible
vibrations, and trade them for less visible vibrations, we prioritize
the penalization of differences in global positions, setting weights
wk
ori for most bodies to zero during retargeting. We only use non-

zero orientation weights when orientation affects function (e.g., for
the end-effector attached to our robotic Bartender, Fig. 11).
In terms of frequencies and amplitudes, we can interpret our

retargeting as compensating for low-frequency vibrations of large
amplitude.

Regularization. Our objective measures performance w.r.t. abso-
lute coordinates. To provide a means to penalize relative differences,
i.e., closeness to the artistic input, we formulate a regularizer that
compares the current profile to the input profiles. In addition, we
ask motor profiles to be smooth by penalizing high accelerations

r ipro(p) =
1
2
(θi (t , p) − θ̃i (t))

2 and r iacc(p) =
1
2

(
Üθi (t , p)

)2
. (23)

Analogously to our objectives, we weigh these regularization terms
with weights that vary with time but are constant from an optimiza-
tion perspective

R(p) =
∫ T

0

(∑
i
wi
pro(t)r

i
pro +w

i
acc(t)r

i
acc

)
dt . (24)

Note that our regularizer only depends on the spline parameters
but not on the state of the robot.

DAE-Constrained Retargeting. To retarget motor profiles to our
physical robots, we minimize our objective under the dynamic equi-
librium constraint (G = 0, Eq. 10), satisfied at every t ∈ [0,T ]

min
p

G(p,U(p)) + R(p) (25)

subject to G(t , p, S(t , p), ÛS(t , p)) = 0 and S(t0) = S0.

As we assume our system to be at rest at the start of an animation
sequence, the initial conditions S0 do not depend on the spline
parameters p.

6.1 Adjoint System and Objective Gradient
While sensitivity analysis and the adjoint method have become
standard tools for implicitly enforcing quasi-static equilibrium con-
straints in minimizations of design objectives (see, e.g., [Geilinger
et al. 2018; Ha et al. 2017; Megaro et al. 2015] for recent examples),
the computation of analytical gradients of our retargeting objective
requires additional machinery [Cao et al. 2003]. As for quasi-static

ACM Trans. Graph., Vol. 38, No. 4, Article 102. Publication date: July 2019.



102:8 • Hoshyari, Xu, Knoop, Coros, and Bächer

problems, we solve the equilibrium constraint whenever we make
adjustments to spline parameters and seek to evaluate our objective
or objective gradient. There are two options for computing analyt-
ical gradients for DAE models: forward and backward sensitivity
analysis. If the number of parameters is small, and does not exceed
the number of simulation DOFs, forward analysis is preferable. In all
other circumstances, backward analysis is the method of choice [Cao
et al. 2003]. Because the number of state variables is in the order of
hundreds (for reduced simulation), and the number of parameters
in the order of thousands, we rely on backward analysis. Note that
forward analysis would be impractical for our problem.
Pointing the reader to our supplemental material (Sec. 2) for a

detailed derivation, we here provide a recipe of how we compute
analytical gradients. Upon parameter changes, we solve our simula-
tion DAE, G = 0 for t ∈ [0,T ], and store the states S(t) for later use.
By time-stepping backwards, we then solve the linear adjoint DAE

E
MT

 Ûλ =
©«−

 ÛUTMT
U

 +

GT
U

GT
V

GT
Λ


ª®®¬λ +


дTU
дTV


(26)

with initial conditions, λ(T ) = 0, for the adjoint variables λ(t). In
evaluations of gradients дU and дV of our objective, Jacobians GU,
GV, and GΛ of our constrained dynamics equations (Eq. 10), and
our generalized mass matrix M and the JacobianMU, we make use
of the states S(t) from the solve of our simulation DAE. We then
evaluate the objective gradient

dG
dp
= −

∫ T

0
λTGp dt , (27)

where we use the states S(t) from forward-stepping Eq. 10 in eval-
uations of the Jacobian Gp, and λ(t) from backward-stepping the
corresponding adjoint system.

Discretizing both DAEs (Eqs. 10 and 26) with a BDF2 scheme with
the same time interval (dividing the interval [0,T ] by the number of
desired time steps), we ensure correspondence along the time axis.
For numerical integration of our objective and objective gradient,
we rely on a cubic Simpson’s rule, and for minimization of our
objective we use standard BFGS.

7 RESULTS
We have used our computational framework to optimize a total of 6
examples with 7 different motion sequences, ranging from didactic
mechanical systems to full-body robotic characters. By progressively
increasing the complexity of the assemblies, their physical size, and
the target motion sequences, we demonstrate the suitability of our
method for complex and large-scale systems. In our accompanying
video, we show the target animation sequence, and the playback
of the unoptimized and optimized motor profiles on the physical
characters, for all our examples.

Fabrication. All our demonstrators are driven with Dynamixel
XM-430-W210 servomotors, controlled from a PC through a Dy-
namixel U2D2 interface. The servos provide sufficiently high torque
that we can assume them to follow the specified motor angle tra-
jectory with no deviation. Demonstrators are assembled using a
combination of off-the-shelf Dynamixel mounting brackets, a small

Fig. 5. Material Fitting. Using motion capture data, we fit elastic and
damping parameters for our deformable rod and 3D-printed materials. Pa-
rameters are fitted with bisection, and we obtain the final parameters within
5 iterations. Our simulations are in close agreement with mocap data, and
the obtained parameters are in agreement with tabulated values.

number of custom aluminum machined connectors, spring steel
rods (diameters 4 and 5 mm), and 3D-printed parts. Structural parts
are printed with Digital ABS material on an Objet Connex 350, and
parts for visual appearance are printed with PLA on an Ultimaker
2+. Flat parts for the 13-DOF robot are laser cut from acetal sheets.
The 100 g and 200 g weights are machined from brass.

Material Fitting. In order to accurately simulate the dynamics of
our deformable bodies, we fit physical parameters (Young’s modulus
and Rayleigh damping coefficients) for the materials we use for our
rods and 3D-printed components. Fig. 5 shows our physical setup
where we mount either a rod or a 3D-printed piece on a single-DOF
motor, comparing simulations to motion captured data. To measure
the physical properties in the frequency range we are interested
in, we attach a 100 g rigid mass to the end of the deformable body.
Applying a 30 or 45 degree rotation, and returning to the rest angle,
the deformable body starts to vibrate, and we use an OptiTrack
system to capture the end effector motion. We observe that our
reduced simulations (Fig. 5, left) closely match the captured motion
(right). We note that the use of quadratic elements and implicit BDF2
(negligible numerical damping) is pivotal to accurately simulate
these oscillatory bending deformations.

Validation. In reduced simulation, we reply on mass-PCA instead
of standard linear modes for multiple reasons: vibrations in our
systems are moderate in amplitude. Hence, we would need a large
number of linear modes to express them. To approximate large
deformations, linear modes can be augmented with modal deriva-
tives [Barbič and James 2005], which are known to provide visually-
pleasing dynamics. However, we found them to not perform well
for our application domain as we illustrate in Fig. 6 (left) where we
use 80 linear modes and modal derivatives (40 FPS) and still wit-
ness significant mismatch. In contrast, the PCA modes (Fig. 5, top
right) match the captured data well with only 11 modes (275 FPS).

ACM Trans. Graph., Vol. 38, No. 4, Article 102. Publication date: July 2019.



Vibration-Minimizing Motion Retargeting for Robotic Characters • 102:9

Fig. 6. Reduced Basis. The use of linear modes and modal derivatives (left)
activates circular motion, and observed frequencies do not match the mocap
data (compare with Fig. 5, left). Reduced simulations are in close agreement
with full simulations of the drumming motion, even though we use the
mass-PCA basis estimated from a full simulation of the boxing motion of
our 13-DOF character (right).

Moreover, with a sufficient number of PCA modes, one can closely
approximate full simulations, whereas with linear and modal deriva-
tives one has to tune material parameters to non-physical values
due to the numerical stiffening. For our retargeting, PCA modes
suffice to express the observed vibrations and even extrapolate well
for other motions with vibrations of similar amplitude (see Fig. 6,
right). Contrary to standard linear modes, PCA modes do not intro-
duce any locking artifacts due to constraints, as the full simulation
enforces the constraints across the motion.

Single Motor Single Rod. Our first example consists of a single
vertical deformable rod (spring steel, 70 cm) mounted on a servo-
motor, with a 100 g mass attached at the end (see Fig. 7). Starting
from the vertical rest configuration, we rotate the motor by 30◦,
pause for 1.5 s, and then return to the rest configuration. With the
non-optimized piecewise linear motor control, the compliant rod
vibrates substantially around the target poses, and significantly de-
viates from the target motion. Our optimization uses the Center
of Mass (CoM) trajectory of the end effector as the objective. We
observe that the optimized motor control suppresses the vibration,
while the timing of the intended motion is kept as closely as pos-
sible. It can be seen that this is done in part by smoothing out the
transitions to poses, and in part by preempting the motions and
adding deformations ahead that cancel oscillations.

Single Motor Two Rods. Extending our first example, we move the
motor from the base to the middle, connecting it to the base and
the end effector with two 30 cm compliant rods (Fig. 8). Similarly to
the first example, we attach a 200 g rigid mass as the end effector.
Starting from the straight vertical pose, we rotate the upper rod
by 90◦ to a horizontal pose. Due to the inertia of the mass, the
lower rod deforms, and under the non-optimized motor control,
the system vibrates significantly. In our retargeting objective, we
track the positions of both the end effector and the motor. Fig. 8
shows that our optimization successfully removes the unwanted
vibrations.

Dancer. In our third example, we increase the complexity to a
4-DOF character assembly where a 25 cm rod represents the body,
and two arms are connected at the clavicle (Fig. 9). Each arm is
comprised of two motors at the shoulder, one deformable rod as the

Fig. 7. Single Motor Single Rod. By preempting the movement of the
input animation (bottom right), our optimized control produces a motion
sequence that closely matches the target, as indicated in the animation
frames (first row) and trajectory plot (botton left).

Fig. 8. Single Motor Two Rods. The two left columns show animation
frames for our target, and non-optimized and optimized motion. The end
effector trajectory and motor control is shown in the right column. Com-
pared to the piecewise linear motor control, our optimized control signal
successfully suppresses the vibration, smoothing out the two discontinuities.

arm, and a 200 g mass as the hand. The target motion is a 8.5 s dance
sequence featuring expressive 3D arm movements (as shown in the
supplementary video). A naïve transfer of the motion sequence to
the servo-motors causes very significant vibrations, in particular
due to the waving motion of the left hand (Fig. 9, first row), causing
the resulting motion of the physical character to be very different
from the target.

ACM Trans. Graph., Vol. 38, No. 4, Article 102. Publication date: July 2019.



102:10 • Hoshyari, Xu, Knoop, Coros, and Bächer

Fig. 9. 4-DOF Dancer.We show 5 representative simulation frames of the non-optimized (left columns, first row) and optimized animation (left columns,
middle row), overlaid the target (in green). The bottom row shows the optimized motion on the physical character. Visualizations of the displacement error for
the positions of the clavicle, left hand, and right hand, are shown in the column on the right. The first 3 frames show the waving motion while the last 2
are dancing poses. The non-optimized animation shows substantial vibrations on the body rod which contribute to even larger deviations on the arms. Our
optimized control successfully removed these excessive vibrations. Deviations for the waving subsequence are largely removed, and counteracted by small
deformations of the body rod. For optimization, weights wpos were set to unity.

Fig. 10. User-Directable Control. If we set the weight for the clavicle
position to a high value (left), the body rod deviates less from the target
than for the result with all weights set to unity (compare with Fig. 9, second
row, first three frames). However, deviations for the left hand increase
significantly for the waving subsequence. If we use a time-varying weight
for the left hand, setting it to a high value for the waving segment (right),
the motion of the right hand counterbalances the waving motion of the left
hand. Visible vibrations are suppressed for all combinations of weights.

In order to suppress the undesirable vibrations, we optimize the
control signals for the 4 motors such that the center of mass trajec-
tories of both the hands and the clavicle match the target as closely
as possible. To demonstrate the user control over the optimization
results, we experiment with 3 different sets of weights on the target
matching terms. In the first experiment, we assign a weight of unity
to all the target positions (Fig. 9, second row). The resulting motion

is close to the target animation sequence, without inducing notice-
able vibrations. However, we note that for the waving sequence, the
displacement of the left hand end effector is mostly achieved by the
deformation of the body rod, as opposed to the rotation of the cor-
responding shoulder motors. Therefore, in the second experiment
(see Fig. 10, left), we increase the objective weight for trajectory
matching at the clavicle by 100×. As expected, visible vibrations
are suppressed, and the deformation of the torso is reduced. How-
ever, the latter comes at the cost of weakening the target-matching
quality for the waving subsequence. We note that our system also
supports the specification of time-varying weights, enabling the
user to emphasize the importance of particular segments of anima-
tion. In the third experiment (Fig. 10, right), in order to restore the
waving motion, we assign a time-varying weight to the left hand by
increasing its weight by 100× for the waving segment. Interestingly,
in this scenario the right arm deviates more from the input target,
performing a counterbalancing motion to the wave while prevent-
ing vibrations. These experiments demonstrate that our system is
able to suppress vibrations in multiple different ways, and can thus
be tuned by the user in order to match a particular artistic intent.

Bartender Robot. As well as being visually displeasing, vibrations
can also negatively impact the functional performance of robot char-
acters. In this demonstration, we present a 4-DOF bartender robot
arm (the end effector has 3 translational and 1 rotational DOFs),

ACM Trans. Graph., Vol. 38, No. 4, Article 102. Publication date: July 2019.



Vibration-Minimizing Motion Retargeting for Robotic Characters • 102:11

Fig. 11. Bartender Robot. The top row shows 4 frames of the simulated
optimization result while the middle row shows the physical robot executing
the non-optimized trajectory and spilling the drink (frames 2 and 4). Bottom
row shows corresponding frames from the optimized trajectory, with no
spillage.

moving a glass of water between 3 locations. The height of the robot
(without the base) is 45 cm. For this demonstrator, we not only ask
the positions of the elbow and end effector to remain close to their
target trajectories but also the orientation of the end effector, holding
the glass, to remain in an upright position. The input trajectory,
when played back on the robot, causes the robot to spill the drink
due to the vibrations. By running our optimization, the robot is able
to perform the same motion sequence without spilling the drink.
We assume the water in the cup to behave like a rigid body of fixed
mass—although this is an oversimplification, our modeling is suffi-
ciently accurate to achieve the desired function. While the results
are best seen in the supporting video, Fig. 11 shows the optimized
result in simulation, the non-optimized motion of the physical ro-
bot which causes the drink to spill, and the retargeted animation
which does not spill the drink. This demonstrator showcases that
our method has applications outside of entertainment.

Rapper Arm. In this example, we demonstrate that our method
supports mechanical systems with kinematics loops and flexible
components of non-rod geometry, made of materials other than
steel (Fig. 12). The system consists of two 3D-printed compliant
arm components, connected with a 4-bar linkage, and 4 motors
controlling the 3-DOF shoulder and the 1-DOF elbow motion. Note
that unlike conventional rigid 4-bar linkages, here we have two
compliant links and two rigid links that are connected with two
hinge joints, one universal joint and one spherical joint in order
to obtain the correct number of constraints while allowing for the
deformable components to move out-of-plane. The input motion
is rapping sequence where the arm is moving in a large 3D space.

Fig. 12. Rapper Arm. The top row shows that under non-optimized control,
the arm deviates significantly from the input sequence (in green). Our opti-
mized control leads to a dynamic motion that is visually indistinguishable
from the target, as shown in the second row (simulation) and third row
(physical character).

Our optimized motor controls successfully remove the substantial
vibrations that are present in the non-optimized control input.

Drummer. We further examine the scalability of our framework,
retargeting a drumming sequence for an 80 cm tall, 13-DOF full-
body articulated robot (Fig. 13). Each arm has 3DOFs at the shoulder
and 1 DOF at the elbow. In addition, the upper body is actuated
with 5motors, controlling the motion of the head, neck, torso, spine,
and pelvis. The character’s legs are two 45 cm rods, fixed at the
base, and the lower arms are 10 cm rods. The duration of the drum-
ming motion is 10 s. In the accompanying video, we can see that
the main deformation mode, which is excited by the drumming
motion, is a backward-forward swaying motion. Interestingly, for
the non-optimized case, the vibration amplitude exhibits significant
periodic variation (being close to zero at some points in time)—this
is seen in both the simulated and physical system. This periodic
variation would make the manual suppression of the vibration, by
either smoothening or offsetting controls, a very challenging, if not
impossible, task. Our optimization targets the center of mass trajec-
tories of the head, pelvis, and both hands. Without any noticeable
degeneracy of motion quality, we successfully suppress the visible
vibration of the overall system (peak amplitude is reduced from
7 cm to 1 cm)

Boxer. In a final demonstration, we retarget a boxing animation to
the same 13-DOF full-body character, replacing the two hands with
boxing gloves on both our simulationmodel and our physical system.
Unlike the drumming sequence, the boxing motion contains faster
motions with abrupt stops. The naïve retargeting causes excessive

ACM Trans. Graph., Vol. 38, No. 4, Article 102. Publication date: July 2019.



102:12 • Hoshyari, Xu, Knoop, Coros, and Bächer

Fig. 13. Drummer. From the left to right, we show the non-optimized and optimized simulation motion (overlaid the target in green), and the retargeted
motion on the physical character. With the non-optimized control, the vibration is excessive whereas in our result, the vibration is almost invisible.

Table 1. Performance Statistics. From left to right, we report the number
of deformable DOFs (defo) for full/reduced simulations, number of rigid
bodies (rigid), optimization DOFs (opt), overall duration of the animation
(dur), FPS for reduced simulations (sim), and the number of minutes it takes
for retargeting (opt).

defo rigid opt dur sim opt
Example #DOF #DOF #DOF (secs) FPS (mins)

motor+1 rod 30390/11 12 150 4 275 24.5
motor+2 rods 46242/19 18 100 3.5 260 70

dancer 81552/76 42 800 8.5 115 160
bartender 82377/67 36 1000 8.5 120 160
rapper 97788/82 54 1000 10 90 340

drummer 85731/75 96 2600 10 108 182
boxer 85731/75 96 3250 9.75 108 185

vibrations, especially when the character dodges and moves his
upper body backwards and forwards. With the same objective and
optimization parameters as for our Drummer, our optimized motor
controls lead to deviations smaller than 1.5 cm (compared to 9 cm
before optimization) while preserving the input animation without
noticeable visual differences.

Performance. Our simulations and optimizations are performed
on a machine with an Intel Core i7-7700 processor (4 cores, 4.2 GHz)
with 32 GB of RAM. Evaluations of internal forces and tangent stiff-
nesses of our deformable bodies are parallelized (multithreading).
For minimization, we use standard quasi-Newton with BFGS [No-
cedal and Wright 2006]. In our experiments, we set the relative
residual tolerance to 10−4 and the max-
imum number of minimization itera-
tions to 100. As we observe in the in-
set energy plot, our minimizations con-
verge well and substantially decrease
the vibrations from the input sequence,
without sacrificing the quality of mo-
tion. See Table 1 for key statistics. A
small timestep (0.5ms) is required to achieve the accuracy we need,
and reduced simulations are 550×-1100× faster than full simulations.

8 CONCLUSION
We have presented a computational tool that retargets artist-created
animation onto physical robotic characters while minimizing un-
wanted vibrations due to system dynamics. Using model reduction
to speed up simulation, we have accurately modeled the two-way
coupling between rigid bodies and flexible bodies. Leveraging this
simulation model, we have optimized the motor control via a con-
tinuous adjoint method such that the physical character motion
matches the artistic intent as closely as possible.

Our approach provides an automated way to retarget digital ani-
mations onto physical characters, and could also be used to evaluate
the design of a physical robot before it is built. Moreover, by sup-
pressing vibrations with the tuning of motor trajectories, we enable
the design of expressive robotic characters that can be less stiff, and
therefore lighter, cheaper, and more accessible to all.

Beyond the application of motion retargeting, our pipeline incor-
porates elements that will in general be valuable for fast simulation
of multi-body systems incorporating coupled rigid-body dynamics
and deformable bodies.
Our simulator captures the dynamic response of the physical

characters well. However, it can be observed that there is still some
deviation between the simulated dynamics and physical system,
leading to small residual vibrations. This is likely due to the assump-
tions of perfectly stiff motor controls and mechanical joints—in
reality both of these will have some non-infinite stiffness. Modeling
these stiffnesses presents an interesting avenue for future work,
but would require more in-depth calibration experiments for model
fitting. A promising approach for eliminating these small residual
vibrations would be to implement an online closed-loop controller
on the physical robot, where the end effector trajectory is measured,
and the motor control adjusted accordingly. This would make the ap-
proach more robust to modeling errors and to unexpected variations
in the external loads.
In the current implementation, the user decides which compo-

nents to model as rigid, and which to model as deformable. In many
applications, this distinction is easy to make. However, for very
large and complex assemblies it could be beneficial to automate this
selection.
While we keep the design of our robotic characters fixed, and

focus on the control problem, our formulation would also support

ACM Trans. Graph., Vol. 38, No. 4, Article 102. Publication date: July 2019.



Vibration-Minimizing Motion Retargeting for Robotic Characters • 102:13

Fig. 14. Boxer. We show the boxing motion under non-optimized and optimized motor controls, overlaid the target motion. Compared to the non-optimized
result, our result largely removes the vibration and matches the target with high visual quality. See Fig. 1 for the physical robot sequence.

the optimization of parameterized dimensions of components, or
the positions and orientation of mechanical joints [Coros et al. 2013].
Inverse contact modeling [Ly et al. 2018] is another exciting avenue
for future research.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful comments;
Maurizio Nitti for animations; Alfredo Ayala, Todd Camill, David
Christensen, Douglas Fidaleo, Tony Martin, Tom Miller, Günter
Niemeyer, Tanner Rinke, Jon Snoddy, Krishna Tamminana (in al-
phabetic order) from Walt Disney Imagineering and Disney Re-
search for fruitful discussions. This work has been supported by the
SOMA project (European Commission, Horizon 2020 Framework
Programme, H2020-ICT-645599).

REFERENCES
Steven S An, Theodore Kim, and Doug L James. 2008. Optimizing cubature for efficient

integration of subspace deformations. ACM Trans. Graph. 27, 5 (2008), 165.
Uri M. Ascher and Linda R. Petzold. 1998. Computer Methods for Ordinary Differential

Equations and Differential-Algebraic Equations (1st ed.). Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA.

Moritz Bächer, Stelian Coros, and Bernhard Thomaszewski. 2015. LinkEdit: Interactive
Linkage Editing Using Symbolic Kinematics. ACM Trans. Graph. 34, 4, Article 99
(July 2015), 8 pages.

David Baraff. 1996. Linear-time dynamics using Lagrange multipliers. In Proceedings of
the 23rd annual conference on Computer graphics and interactive techniques. ACM,
137–146.

Jernej Barbič, Marco da Silva, and Jovan Popović. 2009. Deformable object animation
using reduced optimal control. ACM Trans. Graph. 28, 3 (2009), 53.

Jernej Barbič and Yili Zhao. 2011. Real-time large-deformation substructuring. ACM
Trans. Graph. 30, 4, 91.

Jernej Barbič and Doug L. James. 2005. Real-Time Subspace Integration for St. Venant-
Kirchhoff Deformable Models. ACM Trans. Graph. 24, 3 (July 2005), 982–990.

J. Baumgarte. 1972. Stabilization of constraints and integrals of motion in dynamical
systems. Computer Methods in Applied Mechanics and Engineering 1, 1 (1972), 1–16.

JamesM. Bern, Kai-Hung Chang, and Stelian Coros. 2017. Interactive design of animated
plushies. ACM Trans. Graph. 36, 4 (2017), 80:1–80:11.

K. E. Brenan, S. L. Campbell, and L. R. Petzold. 1996. Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations. SIAM.

Yang Cao, Shengtai Li, Linda Petzold, and Radu Serban. 2003. Adjoint sensitivity analysis
for differential-algebraic equations: The adjoint DAE system and its numerical
solution. SIAM Journal on Scientific Computing 24, 3 (2003), 1076–1089.

Duygu Ceylan, Wilmot Li, Niloy J. Mitra, Maneesh Agrawala, and Mark Pauly. 2013.
Designing and Fabricating Mechanical Automata from Mocap Sequences. ACM
Trans. Graph. 32, 6, Article 186 (Nov. 2013), 11 pages.

Desai Chen, David I. W. Levin, Wojciech Matusik, and Danny M. Kaufman. 2017.
Dynamics-aware Numerical Coarsening for Fabrication Design. ACM Trans. Graph.
36, 4, Article 84 (July 2017), 15 pages.

Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro Sueda, Moira For-
berg, Robert W. Sumner, Wojciech Matusik, and Bernd Bickel. 2013. Computational
Design of Mechanical Characters. ACM Trans. Graph. 32, 4, Article 83 (2013),
12 pages.

Tao Du, Adriana Schulz, Bo Zhu, Bernd Bickel, and Wojciech Matusik. 2016. Computa-
tional multicopter design. ACM Trans. Graph. 35, 6 (2016), 227:1–227:10.

D Economou, C Lee, C Mavroidis, and I Antoniadis. 2000. Robust vibration suppression
in flexible payloads carried by robot manipulators using digital filtering of joint
trajectories. In Intl. Symposium on Robotics and Automation. 244–249.

Nico Galoppo, Miguel A. Otaduy, William Moss, Jason Sewall, Sean Curtis, and Ming C.
Lin. 2009. Controlling Deformable Material with Dynamic Morph Targets. In Pro-
ceedings of the 2009 Symposium on Interactive 3D Graphics and Games (I3D ’09). ACM,
New York, NY, USA, 39–47.

Damien Gauge, Stelian Coros, Sandro Mani, and Bernhard Thomaszewski. 2014. In-
teractive Design of Modular Tensegrity Characters. In The Eurographics / ACM
SIGGRAPH Symposium on Computer Animation, SCA 2014, Copenhagen, Denmark,
2014. 131–138.

Moritz Geilinger, Roi Poranne, Ruta Desai, Bernhard Thomaszewski, and Stelian Coros.
2018. Skaterbots: Optimization-based design and motion synthesis for robotic
creatures with legs and wheels. ACM Trans. Graph. 37, 4 (2018), 160.

ACM Trans. Graph., Vol. 38, No. 4, Article 102. Publication date: July 2019.



102:14 • Hoshyari, Xu, Knoop, Coros, and Bächer

Sehoon Ha, Stelian Coros, Alexander Alspach, Joohyung Kim, and Katsu Yamane. 2017.
Joint optimization of robot design and motion parameters using the implicit function
theorem. In Robotics: Science and Systems.

Kris K Hauser, Chen Shen, and James F O’Brien. 2003. Interactive Deformation Using
Modal Analysis with Constraints.. In Graphics Interface, Vol. 3. 16–17.

Vladímir Villaverde Huertas and Boris Rohal’-Ilkiv. 2012. Vibration suppression of a
flexible structure. Procedia Engineering 48 (2012), 233–241.

Doug L James and Dinesh K Pai. 2002. DyRT: dynamic response textures for real time
deformation simulation with graphics hardware. ACM Trans. Graph. 21, 3, 582–585.

Junggon Kim and Nancy S Pollard. 2011. Fast simulation of skeleton-driven deformable
body characters. ACM Trans. Graph. 30, 5 (2011), 121.

Theodore Kim and Doug L James. 2012. Physics-based character skinning using mul-
tidomain subspace deformations. IEEE transactions on visualization and computer
graphics 18, 8 (2012), 1228–1240.

Seunghwan Lee, Ri Yu, Jungnam Park, Mridul Aanjaneya, Eftychios Sifakis, and Jehee
Lee. 2018. Dexterous manipulation and control with volumetric muscles. ACM
Trans. Graph. 37, 4 (2018), 57.

Siwang Li, Jin Huang, Fernando de Goes, Xiaogang Jin, Hujun Bao, and Mathieu
Desbrun. 2014. Space-time editing of elastic motion through material optimization
and reduction. ACM Trans. Graph. 33, 4 (2014), 108.

Jacques Louis Lions. 1971. Optimal control of systems governed by partial differential
equations. Vol. 170. Springer Berlin.

Libin Liu, KangKang Yin, Bin Wang, and Baining Guo. 2013. Simulation and control of
skeleton-driven soft body characters. ACM Trans. Graph. 32, 6 (2013), 215.

Mickaël Ly, Romain Casati, Florence Bertails-Descoubes, Mélina Skouras, and Laurence
Boissieux. 2018. Inverse Elastic Shell Design with Contact and Friction. ACM Trans.
Graph. 37, 6, Article 201 (Dec. 2018), 16 pages. https://doi.org/10.1145/3272127.
3275036

Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid control
using the adjoint method. ACM Trans. Graph. 23, 3 (2004), 449–456.

Vittorio Megaro, Bernhard Thomaszewski, Maurizio Nitti, Otmar Hilliges, Markus
Gross, and Stelian Coros. 2015. Interactive design of 3D-printable robotic creatures.
ACM Trans. Graph. 34, 6 (2015), 216.

Vittorio Megaro, Jonas Zehnder, Moritz Bächer, Stelian Coros, Markus Gross, and Bern-
hard Thomaszewski. 2017. A Computational Design Tool for Compliant Mechanisms.
ACM Trans. Graph. 36, 4, Article 82 (July 2017), 12 pages.

Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross. 2005.
Meshless Deformations Based on Shape Matching. ACM Trans. Graph. 24, 3 (July
2005), 471–478.

Jorge Nocedal and Stephen J. Wright. 2006. Numerical Optimization, second edition.
World Scientific.

Carmine Maria Pappalardo and Domenico Guida. 2018. Use of the Adjoint Method for
Controlling the Mechanical Vibrations of Nonlinear Systems. Machines 6, 2 (2018),
19.

Jesús Pérez, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, José A. Canabal,
Robert Sumner, and Miguel A. Otaduy. 2015. Design and Fabrication of Flexible Rod
Meshes. ACM Trans. Graph. 34, 4, Article 138 (July 2015), 12 pages.

Jovan Popović, Steven M Seitz, and Michael Erdmann. 2003. Motion sketching for
control of rigid-body simulations. ACM Trans. Graph. 22, 4 (2003), 1034–1054.

Christian Schulz, Christoph von Tycowicz, Hans-Peter Seidel, and Klaus Hildebrandt.
2014. Animating deformable objects using sparse spacetime constraints. ACM Trans.
Graph. 33, 4 (2014), 109.

Tamar Shinar, Craig Schroeder, and Ronald Fedkiw. 2008. Two-way coupling of rigid
and deformable bodies. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. Eurographics Association, 95–103.

Weiguang Si, Sung-Hee Lee, Eftychios Sifakis, and Demetri Terzopoulos. 2014. Realistic
biomechanical simulation and control of human swimming. ACM Trans. Graph. 34,
1 (2014), 10.

Mélina Skouras, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, and Markus H.
Gross. 2013. Computational design of actuated deformable characters. ACM Trans.
Graph. 32, 4 (2013), 82:1–82:10.

Breannan Smith, Fernando de Goes, and Theodore Kim. 2018. Stable Neo-Hookean
Flesh Simulation. ACM Trans. Graph. 37, 2 (2018), 12:1–12:15.

Peng Song, Xiaofei Wang, Xiao Tang, Chi-Wing Fu, Hongfei Xu, Ligang Liu, and Niloy J.
Mitra. 2017. Computational design of wind-up toys. ACM Trans. Graph. 36, 6 (2017),
238:1–238:13.

Jie Tan, Yuting Gu, Greg Turk, and C. Karen Liu. 2011. Articulated swimming creatures.
ACM Trans. Graph. 30, 4 (2011), 58:1–58:12.

Bernhard Thomaszewski, Stelian Coros, Damien Gauge, Vittorio Megaro, Eitan Grin-
spun, and Markus Gross. 2014. Computational Design of Linkage-based Characters.
ACM Trans. Graph. 33, 4, Article 64 (July 2014), 9 pages.

Maxime Tournier, Matthieu Nesme, Benjamin Gilles, and François Faure. 2015. Stable
constrained dynamics. ACM Trans. Graph. 34, 4 (2015), 132:1–132:10.

Adrien Treuille, Antoine McNamara, Zoran Popović, and Jos Stam. 2003. Keyframe
control of smoke simulations. ACM Trans. Graph. 22, 3 (2003), 716–723.

Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt, and Takeo Igarashi. 2014. Pteromys:
interactive design and optimization of free-formed free-flight model airplanes. ACM
Trans. Graph. 33, 4 (2014), 65:1–65:10.

Christoph von Tycowicz, Christian Schulz, Hans-Peter Seidel, and Klaus Hildebrandt.
2013. An efficient construction of reduced deformable objects. ACM Trans. Graph.
32, 6 (2013), 213.

Andrew Witkin and David Baraff. 1997. Physically Based Modeling: Principles and
Practice. In ACM SIGGRAPH 1997 Courses (SIGGRAPH ’97). New York, NY, USA.

ChrisWojtan, Peter J Mucha, and Greg Turk. 2006. Keyframe control of complex particle
systems using the adjoint method. In ACM SIGGRAPH/Eurographics symposium on
Computer animation. Eurographics Association, 15–23.

Hongyi Xu and Jernej Barbič. 2016. Pose-space subspace dynamics. ACM Trans. Graph.
35, 4 (2016), 35.

Hongyi Xu, Espen Knoop, Stelian Coros, and Moritz Bächer. 2018. Bend-it: Design
and Fabrication of Kinetic Wire Characters. ACM Trans. Graph. 37, 6 (2018), 239:1–
239:15.

Ran Zhang, Thomas Auzinger, Duygu Ceylan, Wilmot Li, and Bernd Bickel. 2017.
Functionality-aware retargeting of mechanisms to 3D shapes. ACM Trans. Graph.
36, 4 (2017), 81:1–81:13.

Tong Zhou, Andrew A Goldenberg, and Jean W Zu. 2002. Modal force based input
shaper for vibration suppression of flexible payloads. In Robotics and Automation,
2002. Proceedings. ICRA’02. IEEE International Conference on, Vol. 3. IEEE, 2430–2435.

A MASS MATRICES AND INERTIAL FORCES
Below, we provide implementation-ready generalized mass matrices
for our relative coordinate formulation. For a detailed derivation,
we point the reader to our supplemental material (Sec. 1). In deriva-
tions of mass matrices, we make use of the observation that our
interpolated displacements can be written as sums of columns of
our 3 × 3n basis matrix times a single entry uk of our displacements
u ∈ R3n

u(X, t) = Φ(X)u(t) =
∑
k

ϕk (X)uk (t). (28)

Our mass matrices are

M1 =
∫
Ω
ρ ΦT [X]× dX M2(u) =

∑
k

(∫
Ω
ρ ΦT [ϕk ]× dX

)
uk

M3 =
∫
Ω
ρ ΦT dX M4j =

∫
Ω
ρ XϕTj dX

M5j (u) =
∑
k

(∫
Ω
ρ ϕkϕ

T
j dX

)
uk M6 =

∫
Ω
ρ ΦTX dX (29)

where we precompute the constant blocks in brackets if a sum is
involved. Mass matrix M =

∫
Ω
ρ ΦTΦ dX is the same in absolute

and relative coordinates. To compute matrices M1r -M6r for our
reduced formulation, we set the basis Φ to the reduced basis ΦUr .
j and k iterate over {1, . . . , 3n} for full, and {1, . . . , r } for reduced
simulation. We use numerical integration to evaluate integrals.

ACM Trans. Graph., Vol. 38, No. 4, Article 102. Publication date: July 2019.

https://doi.org/10.1145/3272127.3275036
https://doi.org/10.1145/3272127.3275036

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Constrained Dynamics
	4.1 Elastodynamics
	4.2 Rigid Body Dynamics
	4.3 Constraints
	4.4 Time Discretization

	5 Fast Simulation of Robotic Characters
	6 Optimization
	6.1 Adjoint System and Objective Gradient

	7 Results
	8 Conclusion
	References
	A Mass Matrices and Inertial Forces

