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Espen Knoop1, Moritz Bächer1, Vincent Wall2, Raphael Deimel2, Oliver Brock2 and Paul Beardsley1

Abstract— Handshakes are common greetings, and humans
therefore have strong priors of what a handshake should feel
like. This makes it challenging to create compelling and realistic
human-robot handshakes, necessitating the consideration of
human haptic perception in the design of robot hands. At its
most basic level, haptic perception is encoded by contact points
and contact pressure distributions on the skin.

This motivates our work on measuring the contact area
and contact pressure in human handshaking interactions. We
present two benchmarking experiments in this regard, measur-
ing the contact locations in human-human/human-robot hand-
shaking and the contact pressure distribution for handshakes
with a sensorized palm. We present results from human studies
with the benchmarking experiments, providing a baseline for
comparison with robot hands as well as presenting new insights
into human handshaking. We also show initial work in using
these results for the evaluation of robot hands, and progressing
towards iterative design of robot hands optimized for social
hand interactions.

I. INTRODUCTION

Recent advances in soft robotics [1, 2] and soft manip-
ulation [3, 4] are laying the foundations for safe, comfort-
able and friendly physical Human-Robot Interaction (pHRI).
Going beyond the commonly considered application of safe
shared operating spaces in manufacturing [5], this presents
exciting opportunities for robots interacting socially with
humans. Applications include robot companions, physical
robotic telepresence, prosthetics, toys and entertainment
robots. However, the design of safe and natural-feeling
physical social human-robot interactions requires focused
research and consideration of human haptic perception.

A particularly challenging physical social interaction is
that of handshaking (Fig. 1). Handshakes are common in-
teractions throughout the world, and humans therefore have
strong priors of what a handshake interaction should feel like.
Moreover, the perceived qualities of a handshake contribute
to creating first character impressions and forming social
bonds. More generally, non-verbal communication has been
shown to be five times more important than spoken language
with regards to evaluation of friendliness and liking [6]. This
motivates our work towards developing soft robotic hands
that are capable of realistic handshaking.

From a haptics perspective, physical interactions have a
kinesthetic element (joint torques) and a cutaneous element
of contact forces on the skin. In this work, we consider the
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Fig. 1. Humans are sensitive to subtle variations in handshaking, and hence
it is challenging to realize a natural robot-human handshake. We benchmark
hands to enable natural human-robot interactions.

cutaneous element of handshaking interactions, which is af-
fected by factors of the robot hand including hand shape and
morphology, hand actuation and the mechanical properties
of the skin of the robot hand. This complements existing
research on the kinesthetic aspects of an interaction [7, 8].

The fundamental element of cutaneous haptic interaction
is contact with the skin, which can be quantified through
contact area, contact pressure and contact force. A bottom-
up approach to understanding handshaking should therefore
measure those quantities, while interfering minimally with
the interaction. Although handshaking is a dynamic inter-
action, we argue that important aspects of the handshake
such as hand morphology can be studied without considering
variations over time which allows us to design experiments
with very high spatial granularity in comparison to existing
work.

A. Contributions

We introduce two benchmarking experiments which mea-
sure the non-temporal contact locations and contact pressure
in handshaking interactions. Firstly, we measure hand contact
locations in a minimally-interfering manner, allowing char-
acterisation of realistic interactions. Secondly, we present an
experimental setup for measuring the contact pressure and
grasping force in interactions with a hand-like test object. We
are able to detect low-pressure contacts down to the limits
of human perception.

We perform human handshaking studies with the two
experiments, and also include our initial efforts of evaluating
robot hands and optimizing hand designs for handshak-
ing interactions. Taken together, the two benchmarks allow
us to assess the cutaneous handshaking performance—the
‘handshakiness’—of a robot hand, and provide feedback for
informing the robot hand design.



II. RELATED WORK

The approach of studying and mimicking human per-
formance is widely applied in the robotics literature. For
robot hands, examples include hand kinematics [9] and
hand synergies [4]. Hand kinematics are also considered in
evaluating the anthropomorphism of robot hands [10, 11].
As another example of mimicking human-interactions, Fitter
and Kuchenbecker [12] systematically study human-robot
hand interactions in hand clapping games and teach the
games to the robot. Here, we instead look at mimicking
the haptic perception element of physical human-robot hand
interactions.

Related to aspects of cutaneous haptic perception, Cabibi-
han et al. [13, 14] present work towards creating robotic skin
that feels similar to human skin.

Tsalamlal et al. [15] consider a human-robot handshaking
interaction, and evaluate how perceived affective properties
of the interaction change as the grasping force, arm stiffness,
and the robot’s facial expressions are varied. Pedemonte et al.
[16] develop a system targeted at human-robot handshaking
interactions, including a robot arm controller, a custom hand
and a hand controller. The design of the system is informed
by human performance, and the complete system is evaluated
in a user study. However, as these studies consider entire
robotic systems it is difficult to gain low-level insights
into the precise effects of hand properties such as hand
morphology.

We argue that for mimicking the perceived haptic qualities
of human interactions, the fundamental quantities to study
are the contact areas and contact pressure distributions.
These quantities have been considered in the ergonomics
literature for hand-handle interactions [17, 18], and commer-
cial systems for measuring the contact pressure distribution
in a grasp are available such as the Manugraphy System
from Novel GmbH and the Grip System from Tekscan,
Inc. However, these experiments generally consider values
at peak grasping forces on cylindrical test objects, and the
results can therefore not readily be transferred to the sce-
nario of handshaking. With regards to the safety of human-
robot interactions, recent standardization efforts describe
safety thresholds for contact forces and contact pressures
at different locations on the human body [19]. However,
these thresholds relate to human injury and pain thresholds.
For safe and comfortable social human-robot interactions,
lower thresholds are required. Contact pressure has also been
proposed as an evaluation for soft robotic grippers [20].

Contact forces in human interactions have been measured
using sensorized gloves, both for object grasping [21] and
for handshaking interactions [22]. Closely related to our
work, Tagne et al. [23] study human-human handshaking
interactions and measure contact forces along with IMU hand
motion data. These systems allow for temporal effects to be
captured, but provide sensorization only at particular hand
locations and with limited spatial resolution. Our approach
is complementary in that it provides high spatial resolution
and allows for measurement in any location, but provides no

Fig. 2. Measuring contact area during a handshake. Paint is applied to the
hand of one participant, a handshake is performed with a target participant,
and the paint-transfer pattern on the target participant’s hand shows the
contact area.

temporal information. This high spatial resolution and degree
of sensorization is required for capturing small changes in
hand morphology and informing design changes.

III. MEASURING CONTACT AREA

This section describes our method for measuring the
contact area during human-human and human-robot hand
interactions. Paint is applied to the hand of one participant
(we use fingerpaint which is non-toxic and easily washable).
A handshake is performed with a target participant, and
the paint-transfer pattern on the target participant’s hand
shows where contact has occurred, as illustrated in Fig. 2.
Kamakura et al. [24] use a similar approach, where a human
subject grasps an object covered in paint, and the paint-
transfer pattern is used to measure grasping prehension
patterns. In contrast, we apply the approach to measure hand-
to-hand interactions.

Images are taken of the paint-transfer pattern for the
palmar and dorsal views of the target participant’s hand.
Areas of paint transfer are automatically segmented based
on color. The paint-transfer patterns are then warped to a
desired 2D hand model. This can be used to register multiple
results from a single user, or to register results across users
on a generic 2D hand model, enabling direct comparison of
contact areas from participants with different hand shapes
and sizes.

The above approach can be used to identify the contact
area in a human-human handshake and compare it to the
contact area for a human-robot interaction. This is useful
for robot hand design especially in the optimization of hand
morphology and actuation synergies. The approach does not
capture temporal information.

A. Segmentation and Registration of Paint-Transfer Pattern

Images are captured of the palmar and dorsal sides of the
hand. The following processing is performed for each of the
palmar and dorsal images.

Background subtraction is used to segment the hand from
the background, and color segmentation is used to detect
areas where paint transfer has occurred, using standard tech-
niques [25]. Next the shape matching algorithm in Belongie
et al. [26] is used to match points on the segmented hand
silhouette to a generic hand model (in 2D). This provides
a mapping to warp the detected paint-transfer pattern to the
generic hand model.



TABLE I
HAND SIZES FOR THE PARTICIPANTS IN THE PAINT TEST STUDY.

Participant Width (mm) Circumference (mm) Length (mm)

1 88 209 170
2 89 210 186
3 89 220 168
4 94 225 185

Palmar Dorsal

Percentage of handshakes with contact0 % 100%

Fig. 3. 2D histogram showing the distribution of contact over all trials
of the handshaking interactions. Blue/dark indicates contact in this area in
none of the trials, and yellow/light indicates contact in this area in all of
the trials.

B. Study of Human-Human Interactions
1) Experimental Procedure: The experiment was carried

out with a group of four participants, each performing right-
handed handshakes with the other three participants, for a
total of 12 distinct pairwise handshakes. Hand sizes of the
participants are listed in Tab. I.

2) Data Analysis: For the palmar and dorsal faces, the
measured paint-transfer/contact areas for the 12 handshakes
are mapped onto a generic 2D hand model as described ear-
lier. A histogram is generated in the coordinate frame of the
generic hand model, in which each pixel records the number
of trials where contact occurred. See Fig. 3—blue/darker
areas indicate low contact and yellow/lighter areas indicate
higher contact, over all trials of the handshaking.

3) Results: Referring to Fig. 3, the palmar side shows
little variation in contact area across the set of handshakes.
The dorsal side shows somewhat more variation, in both the
contact area of the thumb with the back of the hand and
also where the fingers wrap around the back of the hand. As
there is little variation in hand size across the participants, we
attribute this difference to natural variation of the grasping.

4) Utilizing This Approach: Fig. 3 is based on human-
human handshaking, and provides a benchmark for a human-
robot handshake, as described further in Sec. V-A. The most
immediate approach is to apply paint to the robot hand and
record the contact area on the human hand. However, the
converse experiment can also have value. A further insight
that can be drawn from Fig. 3 is which parts of the robotic

Fig. 4. Sensorized palm for measuring grasping force, contact area, and
contact pressure distribution of human and robot hand interactions.

hand are important for handshaking interactions—in areas
where contact occurs the shape and surface properties of the
robot hand are important whereas in other areas they do not
matter. For example, it seems clear that the central part of
the palm is not important for handshaking interactions.

IV. MEASURING CONTACT PRESSURE

The previous section described a method for measuring
the contact area of the hand in a real-world handshaking
interaction. To provide further insights into the cutaneous
haptic element of handshaking, we wish to also measure the
grasping force and the contact pressure distribution over the
contact area. As for the contact area measurement, we seek
(a) high spatial resolution and (b) sensorization of all hand
areas where contact occurs.

It is not feasible to cover a whole human hand with high
spatial resolution pressure sensors. We experimented with
a Tekscan Grip System, but the sensing area is relatively
small and we were unable to identify a sensor placement that
would guarantee the measurement of every hand contact in
any location. We therefore designed a ‘sensorized palm’—a
sensorized object that approximates a human palm1, which
measures the grasping force, contact area and contact pres-
sure distribution. The whole surface of the sensorized palm
is sensorized, so it can be used for evaluating human and
robot hands of any morphology and we can guarantee that
all contact points are captured.

A. Sensorized Palm

The sensorized palm is shown in Fig. 4. It is a flat bar
with rounded ends that approximates a human hand, with
a developable surface to facilitate sensorization. The device
does not capture the geometry of the thumb as this would
make the sensorization significantly more challenging. This
is a trade-off between device complexity and closeness to the
real interaction: a palm with more complex geometry would
make the benchmarking experiment far more difficult to re-
produce. We note from Fig. 3 that the thumb of the grasping
participant wraps around the back of the other’s hand, and
we anticipate that this wrap-around will be captured when
grasping the sensorized palm.

The body of the sensorized palm is 3D-printed in two
halves using an Ultimaker printer, with the surface sanded

1We use ‘palm’ to refer to the central part of the hand, palmar and dorsal,
apart from the fingers and thumb.



Fig. 5. Calibration samples of Prescale film, showing film color for contact
pressures increasing linearly between 0.03 and 0.22 MPa.

to provide a uniform finish. A load cell is mounted between
the two halves to provide measurement of grasping force.
We made two sensorized palms, with sizes corresponding to
the median male and female hand size [27].

The sensorized palm provides three measurements—firstly
grasping force using the load cell. Secondly, we measure
the contact area on the sensorized palm using the paint test
described in the previous section—paint is applied to the
human hand, and we record the paint pattern transferred to a
sheet of paper wrapped around the sensorized palm. Thirdly,
the measurement of contact pressure is discussed below.

B. Contact Pressure Sensing
Contact pressure is measured by wrapping the surface of

the sensorized palm with a pressure-sensitive film (Prescale,
Fujifilm Corp.), which changes color with applied pressure.
The film is single use and has high spatial resolution
(⇠0.1 mm). The dynamic range of the film is limited, and
different sensitivity grades are available depending on the
required pressure sensing range. The ‘4LW’ grade (lowest
pressure, rated as 0.05–0.2 MPa) is well suited for pressures
arising in common human hand interactions, while the ‘3LW’
grade (0.2–0.6 MPa) is suited for maximal pressures exerted
by human hands. We find that with appropriate calibration the
range of the ‘4LW’ grade can be extended to 0.03–0.25 MPa.

After each experiment, the film is scanned and we auto-
matically estimate the contact pressure from the film color
value. We apply a low-pass smoothing filter to the image
to remove film granularity, and then estimate the contact
pressure from the green channel intensity. A separate cal-
ibration experiment was performed where known pressures
were applied to the film, the film color was recorded, and
the relationship between green channel intensity and contact
pressure was observed. We found that a quadratic function
describes the relationship well. Fig. 5 shows an example set
of calibration samples.

The main advantage of using the Prescale film is that
it provides very high spatial resolution allowing for fine-
grained evaluation of handshaking grasps. The film can be
cut to shape using a laser cutter, which offers the potential
to sensorize different object shapes with developable sur-
faces. The cost is also considerably lower than for suitable
electronic sensing systems. The single-use nature of the film
means that repeated experiments are time-consuming, but
this was an acceptable trade-off for our work.

The Prescale film has a minimum activation pressure, and
our observation is that the human sense of touch detects
contact pressures significantly lower than this threshold. By
combining the Prescale film with the paint test, we are able
to also identify areas of low-pressure contact which could be
important for haptic perception.

TABLE II
MEAN AND STANDARD DEVIATION OF PARTICIPANT HAND SIZES,

CONTACT PRESSURE STUDY.

µ �

Width (mm) 90.3 3.0
Circumference (mm) 211.3 8.2
Length (mm) 180.1 8.7
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Fig. 6. Boxplot showing handshake grasping force for ‘normal’, ‘strong’
and ‘weak’ handshakes.

C. Human Study, Handshake Grasping Force

Leading up to the study of contact pressure distributions,
we first consider the grasping forces of handshakes. Eight
participants were asked to perform different handshakes with
the sensorized palm, to give an indication of the magnitude
and spread of grasping forces. The participant hand sizes are
summarized in Tab. II.

We asked participants to perform ‘normal’, ‘weak’ and
‘strong’ handshakes with each of the sensorized palms (male
and female size), while the grasping force was recorded.
Each handshake strength was repeated 3 times for the male
and female handle sizes. We take the grasp force as the peak
force measured by the load cell. The resulting grasping forces
are presented in a boxplot in Fig. 6, where the whiskers
show the maximum and minimum values. We observe no
difference for grasping strength results with the male- and
female-sized sensorized palm so these results have been
combined.

It can be seen that there is some variation across the
participants. The median value for a ‘normal’ handshake is
66 N, with 25th and 75th percentiles respectively being 54
and 107 N. There is separation between the interquartile
ranges for the three strengths, but overlap in the extremal
values.

D. Human Study, Contact Pressure Distributions

Next, we performed a study to measure the contact
pressure distributions in human handshakes. This forms a
baseline which can be used to quantitatively evaluate the
handshaking performance of robot hands. The participants
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Fig. 7. Contact pressure and contact area for a single trial. The grasping
force in this trial was 46.9 N.

were the same as for the handshake grasping force experi-
ment.

Participants were asked to perform a single ‘normal’
handshake with the sensorized palm. We recorded the contact
area, contact pressure and grasping force as described above.
The contact area and contact pressure measurements were
combined to show contact areas with contact pressure below
the range of the Prescale film.

As an illustrative example, Fig. 7 shows the contact
pressure distribution for a single trial. It can be seen that the
distribution of contact area is similar to that seen in human-
human handshaking (Fig. 3): the thumb and fingers wrap
around the sides of the handle and contact is made around
the edges of the palm.

These results provide the basis for a discussion about the
quantitative properties of contacts in human handshaking
interactions.

1) Force and Contact Area: We hypothesize a possible
positive correlation between grasping force F and contact
area A. However, this trend is not observed in our data: we
find a correlation coefficient between F and A of R2 =
0.019. Contact area has a mean value of 5500 mm2, with a
standard deviation of 700 mm2.

2) Peak Contact Pressure and Force: The peak contact
pressure P

max

is an important metric for the evaluation of
robot handshake quality: we wish to avoid high localized
contact pressure which may cause discomfort or pain, as
might occur with a rigid robot hand. We expect a positive
correlation between F and P

max

. Fig. 8 shows a plot of
the grasping force against the peak contact pressure for our
dataset. A positive correlation is observed (R2 = 0.41). Note
that in 4 trials the pressure-sensitive film saturated at its
maximum value—these points are shown in pale grey and
were excluded when computing the correlation coefficient.
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Fig. 8. Peak contact pressure P
max

against grasping force F : Pale grey
points indicate that the pressure-sensitive film was saturated.

3) Peak Contact Pressure and Sharpness of Peaks: To
evaluate the sharpness of the high-pressure peaks in the
contact pressure distribution, we define the quantity ⌃P to
be the sum of contact pressure over the contact area. If the
contact area was unwrapped to a flat surface, this would
equate to the resultant force on the surface. The ratio of P

max

and ⌃P is then a measure of the narrowness of the contact
pressure distribution: a contact pressure with localized high-
pressure peaks will produce a high value while a uniform
contact pressure will produce a minimal value. Note that it
is more informative to use ⌃P than to use F , as F only
measures the force in the direction of the principal axis of
the sensorized palm. Fig. 9 shows a plot of P

max

against ⌃P .
Again, pale grey points indicate saturation of the pressure-
sensitive film. A positive correlation is observed (R2 = 0.43,
excluding saturated points).

4) Handshake Adaptation: In the real world, we would
expect the handshake strength to be adapted to the hand-
shaking partner (e.g., a handshake with a child would be
softer than a handshake with a bodybuilder). Our results
indicate that P

max

and ⌃P are correlated with F , and
it is possible that these trends hold across the range of
handshake and strengths. This would then provide another
level of granularity for robot hand evaluation. However,
further experiments are required to explore this in more
detail. As a first test, we performed a single trial of a human
grasping the handle at peak force (using Prescale 3LW). We
measured values of F = 509 N, P

max

= 0.71 MPa and
⌃P = 335 N. Comparing this to the handshaking results in
Figs. 8 and 9, it would seem that the relationships become
nonlinear at high grasping forces.

V. INITIAL EVALUATION OF SOFT ROBOT HANDS

This paper has introduced benchmarking metrics for
human-robot handshaking, and presented results from hu-
man studies. This section presents our efforts towards the
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Fig. 9. Plot showing the peak contact pressure P
max

against the summed
contact pressure ⌃P . Pale grey points indicate that the pressure-sensitive
film was saturated.

(a) (b)

Fig. 10. Robot hands studied here: (a) RBO Hand 2 [3]; (b) Pisa/IIT
Softhand [4].

evaluation of soft robot hands (Fig. 10) using these metrics,
and using this to inform and improve robot hand design.

A. Contact area metric

We performed the contact area test described in Sec. III on
the RBO Hand 2 [3], following the experimental procedure
as described before. We wish to optimize for human haptic
perception, so paint was applied to the robot hand and the
resulting pattern on the human hand was registered. Fig. 11
shows the registered contact area for the interactions with
the RBO Hand 2, overlaid on the human-human results from
Fig. 3.

Comparing the results from the RBO Hand 2 with the
results from human-human handshaking, it can be seen that
much less contact is made with the palm of the human hand.
Looking at the RBO Hand 2 (Fig. 10(a)), this result can be
explained from the lack of defined sides of the palm. As a
first step towards improving this result, we designed the RBO
Hand 2P (Fig. 12) which features a rigid 3D-printed palm in
the shape of a human palm. In a user study, 15 participants
rated the RBO Hand 2P as having an improved handshake
quality over the RBO Hand 2, with no difference in the rated
perceived safety.

Palmar Dorsal

Fig. 11. Contact area from handshaking with RBO Hand 2 (pink), overlaid
on the human-human results from Fig. 3.

Fig. 12. The RBO Hand 2P, featuring a rigid palm in the shape of a human
palm.

B. Contact Pressure Distributions

We measured the contact pressure distribution and grasp-
ing force of the Pisa/IIT SoftHand [4], as described in
Sec. IV. Due to high peak pressures, this required us to use
the ‘3LW’ grade of Prescale film.

We measured a grasping force F of 50 N and a peak con-
tact pressure P

max

of 0.51 MPa. Compared to the maximal-
strength human grasp, this is a similar peak pressure value at
a grasping force which is an order of magnitude smaller. In
informal experiments, we have found that the Pisa/IIT Soft-
Hand is capable of performing uncomfortable and painful
handshakes at a grasping force of 50 N (which would be
classed at the lower end of ‘normal’ handshake, c.f. Fig. 6).
We have discussed this previously [28], and in collaboration
with the University of Pisa, we are currently working towards
improving the performance of the SoftHand in this regard.

C. Exploring the Design Space of Soft Robot Fingers

As a more specific example of how the benchmarking met-
rics could be used in the design of robot hands, we explored
the design space of PneuFlex pneumatic actuators [3] as used
in the RBO Hand 2. We evaluated the ability of different
fingers to wrap around the edge of the sensorized palm, as
would be required in a handshaking interaction.

The PneuFlex is a pneumatic continuum actuator, where
the cross-section along the length of the finger determines the
compliance and actuation behavior. A detailed description
of the geometric relationships is presented by Deimel and



TABLE III
PARAMETERS OF PNEUFLEX DESIGN SPACE SAMPLES.

Finger
Version Stiffness Profile Actuation

Ratio Profile
Nominal
Stiffness

Finger
Length

P10 linear decrease constant 100% 90 mm
P11 linear decrease constant 220% 90 mm
P13 quadratic decrease constant 220% 110 mm
P15 linear decrease linear increase 80% 110 mm
P16 linear decrease linear decrease 80% 110 mm

P17 base: constant,
tip: quadratic constant 200% 130 mm

p10 p11 p13 p15 p16 p17

Fig. 13. The evaluated PneuFlex actuator designs, as described in Tab. III.
The different finger shapes are a result of the changes in cross-sections.

Brock [3]. We can create actuators with different func-
tionality by varying their design parameters. To test the
benchmarking metric with samples from the design space,
we built six actuator prototypes (Tab. III, Fig. 13) that vary
the following four properties:

• The stiffness profile determines the relative bending
stiffness along the actuator. A finger with a linearly
decreasing profile is stiffest at the base and softer at
the fingertip.

• The actuation ratio profile specifies the pressure-to-
curvature relationship along the actuator. It can be
constant, linearly increasing, or linearly decreasing from
base to tip.

• The nominal stiffness is given in percent of the original
PneuFlex design’s stiffness. A high value indicates
higher inherent stiffness.

• The finger length is measured between base and tip. As
the PneuFlex is a continuum actuator, a different length
allows to align the finger base differently, creating
different contact distributions.

We evaluated each finger design using the sensorized palm
introduced in Sec. IV-A. The surface of the male-sized device
was covered with the more sensitive ‘4LW’ grade film. The
base of the actuator was attached to the side of the palm, so
that the finger wrapped around it when inflated. Each actuator
was then manually inflated to its maximum pressure, and the
resulting contact pressure distribution was measured.

The results shown in Fig. 14 represent data points in the
design space spanned by the prototypes. While not spanning
the space, this hints at commonalities within the design
space and properties that can be varied. When comparing
the pressure distributions of the prototypes, we can make a
few notable observations. The prototypes P10 and P16 make
contact along a longer line than, e.g., the stiffer P11 finger.

p10 p11 p13 p15 p16 p17 human
0 MPa

0.25 MPa

ba
se

tip

Fig. 14. Pressure distribution on the sensorized palm of the design space
samples and a human finger. The length of the human finger is 90 mm.

When comparing to the human finger this seems desirable.
The PneuFlex actuators create contact areas that are

smaller than for the human finger. Fingers P13 and P17 show
the best performance in this regard. All prototypes also have
a pressure point at the fingertip, which is most pronounced
in P11 and P16. This would likely cause discomfort in a
human interaction.

Our results show that the parameters we explored here
have some influence on the contact area and pressure.
However, the pressure distribution from the PneuFlex fingers
is still significantly different to that of a human finger. It
seems that the parameter space studied here is not sufficient
to reproduce the human distribution and other design changes
are also required. One promising approach we are exploring
is to mimic the soft finger pulp of a human finger in the
PneuFlex actuators using elastomers and gels.

It can be seen that the benchmarking approach taken here
allows us to focus on specific aspects of robot hand designs
before creating full hand prototypes.

VI. DISCUSSION

In the real world, handshakes are different across the
population and individuals may also adapt their handshake
depending on who they interact with. Sophisticated robotic
systems should also exhibit such adaptation. However, we
observe that many factors of handshaking show little vari-
ation across the human population and far greater variation
for current robotic hands (e.g. hand morphology and skin
properties). This is exemplified by Fig. 11. At this stage
of research, it is therefore more meaningful to average
across sets of human handshakes to capture properties that
are consistent across human handshakes. In our experiment,
we did not give participants specific instructions, so our
data should capture natural variation within and between
participants. Once a certain level of performance in robot
hands is obtained with respect to the benchmarks presented
here, attention could be directed at producing more subtle
variations.

The metrics introduced in this paper do not consider
variations over time, which are clearly important for creating
realistic dynamic interactions. However, many hand proper-
ties such as hand morphology and local surface properties are



constant and it is therefore more appropriate to study them in
a non-temporal manner. For initial hand optimization, such
properties should be considered. Our approach could be used
for initial coarse-level hand optimization, before considering
temporal elements, and also in later optimization stages for
tuning local surface contacts. This justifies our approach
taken here of performing non-temporal benchmarking ex-
periments. Again, we point to the literature for studies of
temporal variation at lower spatial resolution [22, 23].

Our benchmarking tests are useful for informing hand
design at different levels of granularity. This includes design
parameters such as hand morphology, as demonstrated with
the RBO Hand 2P, and actuation synergies, which will lead
to large global changes in the contact area and pressure
distribution. The local properties of the hand contact will
be affected by hand properties including actuation synergies,
finger actuator design and hand surface properties.

Although the focus of this paper has been on handshakes,
other social physical human-robot interactions also require
consideration of the perceived haptic sensation and could
benefit from implementing similar methods. This includes
other greeting interactions such as hugging, and healthcare
applications where robots could be supporting or lifting
patients.

VII. CONCLUSION

We have presented two new benchmarking experiments for
characterizing the cutaneous haptic element of handshaking,
allowing for the ‘handshakiness’ of robot hands to be evalu-
ated. We have used these benchmarks to measure properties
of human handshaking, specifically the hand contact area
and contact pressure distribution as well as the grasping
force. In addition to providing a baseline for comparison
with robot hands, this also provides new insights into human
handshaking. We have presented sample results of using the
benchmarks for evaluation of robot hands, which paves the
way towards optimization of hand designs for handshaking
using benchmarking metrics.
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