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Abstract—This paper introduces a computational approach
for routing thin artificial muscle actuators through hyperelastic
soft robots, in order to achieve a desired deformation behavior.
Provided with a robot design, and a set of example deformations,
we continuously co-optimize the routing of actuators, and their
actuation, to approximate example deformations as closely as
possible.

We introduce a data-driven model for McKibben muscles,
modeling their contraction behavior when embedded in a silicone
elastomer matrix. To enable the automated routing, a differen-
tiable hyperelastic material simulation is presented. Because stan-
dard finite elements are not differentiable at element boundaries,
we implement a Moving Least Squares formulation, making the
deformation gradient twice-differentiable.

Our robots are fabricated in a two-step molding process,
with the complex mold design steps automated. While most soft
robotic designs utilize bending, we study the use of our technique
in approximating twisting deformations on a bar example. To
demonstrate the efficacy of our technique in soft robotic design,
we show a continuum robot, a tentacle, and a 4-legged walking
robot.

Index Terms—Soft Robotics, Artificial Muscles, MLS-based
Simulation, Equilibrium-Constrained Design Optimization

I. INTRODUCTION

THE OCTOPUS tentacle and the elephant trunk are com-
prised of soft tissue only, and their deformation behavior

is entirely governed by the actuation of complex internal
muscle networks. The routing patterns of these muscles have
evolved over millions of years, and enable extraordinarily
dexterous movement, manipulation, and locomotion.

Taking this as inspiration, we here study the problem of
designing and controlling muscle-like embedded actuation
systems for soft-bodied robots, in particular the routing and
the actuation of individual muscle fibers. We consider the
general problem of placing soft one-dimensional actuators
inside an arbitrary hyperelastic soft body, to obtain a desired
deformation behavior.

Due to the non-linear coupling between the soft continuum
body and the actuators, the complex interaction between
control and routing parameters, and the large deformations, a
manual trial-and-error exploration of the design space would
rapidly become intractable for all but the simplest cases. A
simulation-based design optimization approach is therefore
required.

To this end, we formulate an optimization problem where
we solve for the optimal routing and actuation parameters of
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artificial muscle actuators, such that we get as close as possible
to user-specified target deformations.

We represent fiber-like actuators with cubic Hermite splines.
Embedding them in a Finite Element (FE) representation of
the soft body, we model their contraction behavior along these
curves with a non-linear spring, estimating pressure-dependent
spring parameters from characterization experiments. During
optimizations, we then seek to find the optimal spline and
actuation values, such that the robot design matches a set of
targets in a least-squares sense. We explore several distance
metrics to measure differences between simulated and target
deformations, observing that the minimization of deformations
along user-selected curves leads to desirable results.

Standard FE formulations interpolate FE degrees of freedom
with Lagrange shape functions. While sufficient for simulation,
the resulting deformation gradient is discontinuous at element
boundaries. However, to freely move actuation fibers through
elements using continuous Newton-type optimization, the de-
formation gradient has to be at least twice-differentiable. To
make our simulations differentiable, we replace Lagrange with
Moving Least Squares (MLS) shape functions. Constraining
simulated deformations to be in equilibrium when comparing
them to targets, we then co-optimize the routing of actuators,
and actuation variables.

To showcase our formulation, we use thin McKibben arti-
ficial muscle actuators and route them through a soft silicone
body. These actuators are fully soft and compliant, they
are readily available and easily controllable, and they lend
themselves well towards integration into robots of arbitrary
shape as they do not impose constraints on the geometry of
the robot. We would expect our approach and model to also
be applicable to other embedded fiber-like actuators such as
shape memory alloys or twisted Nylon actuators [1].

We demonstrate the efficacy of our method on a soft
continuum robot, undergoing a complex spatial deformation,
a soft robotic octopus tentacle, and a four-legged robot which
twists and bends to locomote.

Succinctly, our core contributions are:

• A technique for co-optimizing the design and control of
fiber-like actuators embedded in hyperelastic soft bodies,
targeting the approximation of a desired deformation
behavior spanned by user-provided samples.

• A differentiable simulation with a MLS-based deforma-
tion field, enabling the continuous optimization of fiber-
like entities in soft continua.

• A data-driven model for McKibben actuators embedded
in silicone, well-suited for simulation and optimization.



II. RELATED WORK

Early work in computational design of actuated soft robots
includes research by Hiller et al. [2], where a complete
automated pipeline for designing and fabricating soft robots
is presented. However, their method is specific to actuation by
volume-changing voxels and is not suited for more common
actuation mechanisms.

More recently, Connolly et al. [3, 4] considered the
simulation-driven design of fiber-wrapped finger-like actua-
tors. However, their technique is tailored to fiber-wrapped
actuators and therefore not readily transferrable to robots of
arbitrary geometry. Similarly, Deimel et al. [5] considered
the simulation-aided optimization of a soft robot hand for a
grasping task, varying the actuator design parameters. Other
computational methods have also been developed which are
specific to finger-like actuators [6, 7, 8]. In this work, we are
interested in the more general problem of actuating a soft-
bodied robot of arbitrary shape with fiber-like actuators.

The actuation of arbitrary shapes has also received some
attention. Ma et al. [9] developed a method for designing
pneumatic chambers in soft-bodied objects so that they deform
in a specified manner, but their approach is tailored to soft-
material 3D printing. Bern et al. [10] considered the design of
cable networks for actuating soft plush robots.

A central aspect of our work is that the artificial muscle
routing is posed as a continuous optimization problem, where
the muscle is free to move smoothly through the underlying
simulation mesh. This is in contrast to approaches where only
discrete and discontinuous sets of routings are considered [10,
11].

Design using Differentiable Simulation: With regards to
simulation-based design, Morzadec et al. [12] considered the
shape optimization of a soft robotic leg, driven by conventional
(rigid) servomotors. Related design problems were tackled
in computer graphics, including the design of cable-driven
deformable [13] and compliant [14, 15] structures, rubber
balloons [16] and inflatable structures [17], and compliant
mechanisms [18]. Contrary to this approaches, we describe
a differentiable simulation that enables the continuous opti-
mization of fiber-like entities embedded in soft bodies.

Our approach is also similar in nature to [19] and [11]:
although they considered the design of sensing networks rather
than actuation networks, the underlying principles are similar.
In [11], a sub-selection strategy was considered, where a sub-
set of fiber-like sensors was chosen from a larger, redundant
set. However, the routing of sensing elements was not refined.
In [19], the routing of sensors was optimized. However, they
restricted refinements to planes, and smoothed the deformation
field, introducing significant error.

Use of MLS in Simulation: Instead of standard Lagrange
shape functions, we rely on MLS shape functions in our sim-
ulation. Various MLS-based mesh-free simulation techniques
have been proposed, and we point the reader to the survey by
Fries and Matthies [20] for a detailed review. Like Breitkopf
et al. [21] and Martin et al. [22], we rely on an explicit
formulation of MLS shape functions, and like [23, 24], we
use linear and quadratic moving least squares. However, in
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Fig. 1. Pipeline Overview As input, the user provides a soft robot design, a
set of desired target deformations, initial routings for the artificial muscle
fibers (yellow), and a set of “tracking curves” (pink) which specify the
locations on the robot where the target-matching error should be minimized.
In the design optimization stage, a Finite Element simulation predicts the
robot deformation for a given muscle routing and actuation pressures, and
this is used in conjunction with a 2nd order optimization scheme that updates
the muscle routings and actuation pressures to improve target-matching
performance. By using a Moving Least Squares (MLS) Finite Element model,
the muscle fibers can move smoothly through the underlying simulation mesh.
This is iterated until convergence. After an optional post-processing step of
removing collisions by slightly perturbing colliding fibers, molds are designed,
and the robot is fabricated using silicone injection molding.

contrast to previous work, we discuss the use of MLS in
the context of equilibrium-constrained optimization, providing
sufficient smoothness to enable the continuous optimization of
the routing of fiber-like entities embedded in soft robots.

Artificial Muscle Modeling: While analytical artificial
muscle models exist [25, 26], they idealize the behavior of
these actuators, and cannot directly be used for optimization.
Phenomena such as friction between fibers, or the resistance to
stretching beyond the intended maximum length of an actuator,
are difficult to model analytically. Most importantly, previous
models do not account for the embedding of muscles in a
soft elastomer matrix. We instead propose a data-driven model
that explains measured data, and is well-suited for automated
routing using optimization.

III. OVERVIEW

An overview of the steps in our pipeline is presented in
Fig. 1, with a simplified example of a bar. As input, the user
specifies an initial robot design, a set of target shapes to match,
initial routings for the artificial muscle fibers, and a set of
“tracking curves” that specify the locations on the robot where
the target-matching error should be minimized. The core of our
pipeline is an automated design optimization, which combines
a differentiable FE simulation of the soft robot with embedded
muscles, together with a 2nd order optimization scheme that
updates the muscle routings and actuation pressures in order to
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Fig. 2. Design Optimization We represent the individual artificial muscle
fibers in a robot design at rest with spline curves sk , and ask the user to specify
their initial routing with a spline tool (a), together with a set of target shapes t
(b). We then co-optimize their routing (c, yellow) and actuation pressures pk
to minimize differences between simulated and desired target shapes (d). We
use n FE degrees of freedom Xi and xi, stacked in 3n-vectors X and x, to
represent the undeformed and deformed configuration of the robot. Because
we optimize a different set of pressure values per target, we add superscripts
t to the quantities describing the deformed configuration.

improve target matching performance. After an optional post-
processing step to remove collisions between muscle fibers,
the optimized robot is fabricated using a two-step silicone
injection molding process.

In the design optimization, illustrated in Fig. 2, we co-
optimize the muscle fiber routing and actuation to approximate
the user-specified shapes as closely as possible. The initial
routing defines the in- and outlets of the actuators, whose
positions we keep fixed throughout optimizations.

We represent an unpressurized artificial muscle k, embedded
in a soft robot design, with spline parameters sk. When
pressurized to pressure pk, the robot deforms.

As strain fields are difficult to predict, the routing of actu-
ators, and their optimal actuation, is a highly non-trivial and
counterintuitive task, and a manual routing leads to suboptimal
results at best. To navigate this complex design space, we
propose to utilize computation.

To pose our optimization problem, we collect the individual
spline control points in a larger column vector s, and corre-
sponding pressure values in a vector p. Our ultimate goal is
then to find an optimal routing of the actuators, approximating
a set of target shapes t as closely as possible, with a set of
co-optimized pressure values pt that vary per target.

A. Simulating Artificial Muscle Actuation

To measure differences between current and desired defor-
mations, we simulate the response of an actuated robot using
finite elements e. For FE simulation, we use an energy-based
formulation [27] where we integrate the strain energy density
Ψ of a standard hyperelastic model, over the rest volume Ve
of each element

Eelast(x) =
∑
e

∫
Ve

Ψ(F(X,x,X)) dV. (1)

We evaluate the strain energy density at points X ∈ R3 in
the rest volume by computing the deformation gradient F at

TABLE I
NOTATION: UNDEFORMED AND DEFORMED CONFIGURATIONS, AND

TARGETS.

dim. undef. def. def. (tar.) tar.

point
in domain R3 X =

 X
Y
Z

 x =

 x
y
z

 xt -

FE DoF R3 Xi =

 Xi
Y i
Zi

 xi =

 xi
y
i

zi

 xt
i -

FE DoFs R3n X x xt x̂t

dim.: dimensions; undef.: undeformed configuration; def.: deformed
configuration; def. (tar.): deformed configuration for target t; tar.: user-
specified target deformation; FE DoF: single finite element degree of
freedom; FE DoFs: all finite element degrees of freedom stacked in a single
vector.

X that depends on the n undeformed and deformed three-
dimensional FE degrees of freedom, Xi and xi, collected in
3n-vectors X and x (compare with Fig. 2 and Tab. I).

To model the energy induced by the actuators, we propose
a data-driven artificial muscle model that acts like a non-linear
spring, contracting the fiber along the spline curves C when
pressurized. To this end, we formulate a custom strain energy
density, and make this energy density, as well as the strain ε
along the spline curve, dependent on the pressure

Eact(s,p,x) =
∑
k

∫
C(sk)

Ψact(pk, ε(pk,X,x,X)) dC, (2)

with the differential dC set to an infinitesimal circle-swept
curve element, and hence a volume. Note that this formulation
has a resemblance to common rod models. We will discuss our
custom muscle fiber model in Sec. VI.

While we describe a specific model for McKibben-type
muscles, we would like to stress that our simulation and
optimization would interface with other fiber-like actuators.

To simulate the actuated robot , i.e. to compute the deformed
configuration x(s,p), we minimize the total potential energy
E = Eelast + Eact to first-order optimality

f(s,p,x) =
∂Eelast

∂x
+
∂Eact

∂x
= 0, (3)

where the elastic and actuation forces are in equilibrium. For
robots made of a softer silicone, gravity has a non-negligible
effect, and we formulate an additional energy that accounts
for the work done by the gravitational force.

Note that this equilibrium changes whenever we move
embedded fibers, or pressurize them with a different set
of pressures. Hence, to compare simulated to user-specified
targets during optimizations, it is important to enforce this
equilibrium condition as a constraint.

When optimizing a robot design, we seek to move mus-
cle fibers across finite element boundaries. Because standard
Lagrange shape functions lead to a deformation field that is
continuous but not differentiable at these boundaries, we re-
place this basis with sufficiently smooth Moving Least Squares
(MLS) shape functions. We discuss the differentiability of our
simulation in Sec. IV.
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Fig. 3. Smoothness of Deformation Field. If we interpolate deformed
degrees of freedom of elements with standard Lagrange shape functions (a,
standard FEM), the deformation gradient field is discontinuous at element
boundaries independent of the order of the shape functions as illustrated in
1D (b, linear quadratic). To enable the automated routing of fibers across
boundaries, we rely on MLS shape functions (b, MLS), weighing the influence
of nodal degrees of freedom (a, MLS interpolation) with a thrice-differentiable
weighting function (a, MLS weighting function).

B. Automated Routing of Actuators

To co-optimize the routing and actuation of muscle fibers,
we minimize the distance between simulated deformations,
xt∈ R3n, and user-specified target deformations x̂t∈ R3n.
Because user-specified targets result in strain distributions that
are, in general, difficult to achieve with embedded muscles,
we cannot hope to match targets exactly. In Sec. V, we will
introduce a distance metric fdist that relies on user-specified
tracking curves to achieve a desired target matching quality.

In summary, we solve the problem

min
s,p

∑
t

fdist(x
t(s,pt), x̂t) +R(s) (4)

s.t. f(s,pt,xt(s,pt)) = 0, plo ≤ pt ≤ pup, ∀t,

bounding the allowable pressure values from above and below.
The term R(s) penalizes high-curvature in routed fibers, and
prevents them from moving outside of the design.

IV. DIFFERENTIABLE SIMULATION

To automate the routing of muscle fibers through a dis-
cretized deformable solid, the deformation field has to be at
least thrice-differentiable to enable numerical optimization us-
ing a quasi-Newton method with an approximate Hessian [28].
Note that a twice-differentiable deformation field is insuffi-
cient, because we require a twice-differentiable deformation
gradient for optimization with 2nd-order techniques.

In standard finite element simulations (Fig. 3 a, standard
FEM), the deformed configuration is interpolated separately
on each element, and hence the deformation field is only C0-
continuous at element boundaries, independent of the order of
the shape functions used (b, linear, quadratic). If we were only
interested in simulating soft robots with embedded artificial
muscles, standard finite elements would suffice. However,
for optimization, the deformation field has to be sufficiently

smooth not only within, but also across, elements, and a
smooth transition at element boundaries is only feasible if
degrees of freedom of neighboring elements are taken into
account (b, MLS).

The mapping of points X in the undeformed domain to
points x in the deformed domain is commonly defined by
interpolating the deformed nodes xi with standard Lagrange
shape functions Ni

x(X,x,X) =
∑
i

xiNi(X) with xi =

 xi
y
i
zi

 . (5)

We instead rely on an approximating scheme with MLS shape
functions that are common in meshless techniques [20]. Unlike
for other schemes, the weighting function (Fig. 3 a, MLS
weighting function) provides us with a mechanism to achieve
a desired smoothness (b, MLS) while restricting the influence
of each nodal degree of freedom to a local neighborhood
(local support property). The latter is important for keeping the
tangent stiffness matrix sparse, and simulations and analytical
gradient computations efficient.

A. Constructing Thrice-Differentiable MLS Shape Functions

To construct Lagrange shape functions, we assume a poly-
nomial basis b(X) (e.g., a linear basis [1, X, Y, Z]T ), and seek
coefficients ci such that shape function Ni(X) = b(X)T ci
fulfills the Kronecker delta property Ni(Xj) = δij . This
construction guarantees that nodal degrees of freedom are
interpolated.

For an MLS-basis, a polynomial approximation is computed
for every evaluation point X, hence coefficients depend on
X. For example, to compute the x-component of point x in
the deformed domain, the coefficients are the solution to the
weighted least squares problem

c(X) = arg min
c

∑
i

wi ‖b(Xi)
T c− xi‖2, (6)

with weights wi = w(‖X −Xi‖) decaying the further away
the evaluation point is from an undeformed node Xi (Fig. 3
b). Conveniently, the closed-form solution of this problem can
readily be derived by setting the gradient of the least squares
objective to zero

c(X) = G−1(X)
∑
i

wib(X)xi G(X) =
∑
i

wibib
T
i

where bi is the basis evaluated at Xi. Hence, we compute the
x-coordinate of the deformed configuration according to

x(X) = b(X)T c(X) =
∑
i

xi wib(X)TG−1(X)bi︸ ︷︷ ︸
Ni(X)

, (7)

defining the MLS-shape functions Ni(X). As long as a
sufficient number of degrees of freedom is within the finite
support of the weighting function (compare with Fig. 3 a, MLS
interpolation), matrix G is invertible, and shape functions are
well-defined. Note that the shape functions do not depend on
the deformed configuration, so they can be precomputed for
each quadrature point, and used as in Eq. 5.



In contrast to standard interpolation, the MLS-based defor-
mation field is approximating (Kronecker delta property is not
satisfied). Hence, we use a variant of Nitsche’s method [29]
to approximate Dirichlet conditions. Alternatively, regularized
weighting functions could be used [30]. The shape functions
fulfill the convergence requirements of FEM, as the continuity
condition is met by construction, and the completeness condi-
tion (strain-free rigid body motion) is fulfilled as long as we
include the constant and linear terms in our polynomial basis.

To guarantee sufficient smoothness for optimization with
2nd order techniques while keeping the finite support of radius
r as small as possible, we custom-crafted a C3 weighting
function (see Fig. 3 a, MLS weighting function)

w(x) =

{
20( x

r )
7−70( x

r )
6
+84( x

r )
5−35( x

r )
4
+1, 0 ≤ x ≤ r

0, r ≤ x.

B. Simulating Robot Designs

Other than exchanging Lagrange with C3-MLS shape func-
tions in the definition of the deformation gradient

F(X,x,X) =
∂x

∂X
=
∑
i

xi
∂Ni(X)

∂X
, (8)

we proceed analogously to standard FEM [31]: We discretize
the integral over tetrahedral elements with an 8-point Gauss
quadrature, and form the gradient and Hessian of the total
potential energy E for minimization with standard Newton.
For MLS, we use a linear polynomial basis [1, X, Y, Z]T , or a
quadratic basis with 6 additional monomials of degree 2. While
counterintuitive at first glance, a linear basis is often sufficient
as MLS performs a weighted least squares approximation at
every evaluation point, resulting in a deformation field that
can be made arbitrarily smooth by choosing an appropriate
weighting function. Interestingly, with the same number of
degrees of freedom as for standard FEM, MLS achieves a
significantly smoother deformation field at a small price in
computational efficiency due to more non-zero entries in the
energy Hessian (or tangent stiffness matrix).

C. Taking Derivatives of Equilibrium Constraints

To solve our automated routing problem (Eq. 4), we im-
plicitly enforce equilibrium constraints by running simulations
to first-order optimality before evaluating target matching
objectives, or their gradients.

To compute the analytical gradient of the distance metric
fdist(x

t, x̂t) for a target t, we take the derivative of the
respective equilibrium constraint in Eq. 4, and apply the
implicit function theorem

dfdist

d(s,pt)
= −∂fdist

∂x

(
∂2E

∂x2

)−1
∂2Eact

∂x ∂(s,pt)
. (9)

The second derivative of the total potential energy E is
the simulation Hessian. Because only the actuation energy
depends on the spline parameters and pressure values, we
restrict the derivative of the force ∂E

∂x with respect to s and pt

to the actuation energy. For evaluations of the latter Jacobian,
second derivatives of shape functions are required. This is due

Rest shape Target shape Deformed shape

Fig. 4. Measuring Distances to Targets. To specify targets, we let the
user specify deformations of the conformal surface mesh (middle), running
a simulation with soft Dirichlet conditions to “fill in” the deformation for
non-boundary nodes. To compare simulated to target deformations, we define
tracking curves in form of spline curves (pink), measuring differences in
sampled positions, qj , and corresponding frames Aj .

to the dependence of the strain on the deformation gradient,
as we will discuss in Sec. VI. With the exception of the
derivatives of shape functions, all derivatives can be found
with a symbolic differentiation package. To form derivatives
of shape functions, the derivative of the inverse of matrix G
is needed: ∂G−1

∂X = −G−1 ∂G∂XG for the X-coordinate of X.

V. OPTIMIZATION

User-provided targets x̂t are either specified by running
forward simulations with user-specified external forces, or
by specifying deformations of the conformal surface mesh
with an external modeling tool, followed by a simulation
where we approximate this deformation volumetrically with
soft Dirichlet conditions [29] (see Fig. 4 middle). The former
is the preferred option for simpler designs because a bound on
the magnitude of the applied forces helps to keep strains within
reasonable limits. For complex designs (e.g., the walking
robot), it is tedious to achieve desired deformations with
external forces, and we prefer to specify them with surface
modeling tools. To keep strains within bounds for this second
option, we optionally penalize large strains.

A. Measuring Distances To Targets

In most soft robotic tasks, there will be some part of the
robot body where the deformation is more important than in
other parts. For example, for a soft robotic gripper, one would
typically place more importance to the deformation in areas of
contact, whereas for a swimming continuum robot, one would
want the overall shape of the robot to be matched. In many
cases, it is still convenient for the user to specify a target
deformation with a mesh, as this can be readily manipulated
using standard software such as Autodesk Maya, however, the
optimization should be guided towards where on the robot to
match the target deformation.

To this end, we introduce the notion of tracking curves,
which are spline curves going through the object (in pink
in Fig. 4), and along which the deformation is measured
and compared with the target. Specifically, we sample this
sensor curves at a discrete set of locations qj , defining local
frames whose orthonormal axes point in tangent, normal, and
binormal directions, are collected as columns in an 3× 3 ori-
entation matrix Aj (see frames in Fig. 4). We then transform
these sample points to their simulated and target locations



using Eq. 5, and corresponding orientations with the respective
deformation gradient (Eq. 8), defining the distance metric

fdist(x
t, x̂t) = wpos

∑
j

1

2
‖x(X,xt,qj)− x(X, x̂t,qj)‖2

+wori

∑
j

1

2
‖F(X,xt,qj)− F(X, x̂t,qj)‖2F .

The weights wpos and wori provide the user with a means
to emphasize position, or orientation matching. Note that we
dropped the local frame Aj in the second term, because it
cancels out: if D is set to the difference between the two
deformation gradients, we get ‖DAj‖2F = tr(DTD) for the
squared Frobenius norm, because Aj is an orthonormal matrix.

Penalizing differences in deformation gradients provides an
effective means to circumnavigate undesired minima. As we
demonstrate with a validation example (Sec. VIII; Fig. 8), our
optimization is largely insensitive to the user-specified initial
routing of fibers.

To represent fibers in optimizations, we use cubic Hermite
spline curves. We recall that the entry and exit points of the
muscle are provided by the user, and remain fixed throughout
optimizations. This means that other considerations can be
accounted for (for example, in the case of the Tentacle, it
is desirable to have the supply tube at the fixed end). While
our pneumatic muscles do not require an exit point but could
be terminated inside the body, it is advantageous to have an
exit point for thermal actuators such as shape memory alloys
or twisted Nylon actuators.

B. Regularizing Shape and Length of Actuators

Some regularization is required to ensure a meaningful so-
lution. A first term of the regularizer R(s) in our routing prob-
lem (Eq. 4) penalizes high actuator curvature. This prevents
designs in which muscles could malfunction, and simplifies
fabrication. To prevent the muscle from getting too close to the
outer surface of the robot, we add a term that penalizes, with
a barrier function, small distances between actuator sample
points and the outside surface of the undeformed design. This
is implemented with an Axis-Aligned Bounding Box (AABB)
tree, for speed. While it would be straightforward to add
a penalty on the length, this is, in general, not necessary:
because we keep the number of control points fixed, the length
is naturally limited if the other two regularization terms are
active.

For multi-fiber designs, we either optimize fibers simulta-
neously, or sequentially. The benefit of the first strategy is that
simultaneous actuation can approximate a richer deformation
space with less actuators. With the second strategy, we can
keep actuators orthogonal, meaning that only one actuator is
pressurized at a time.

Independent of the chosen strategy, muscles may overlap
after optimizations. While it is important to let individual
fibers “unfold” (freely cross) during optimizations, for optimal
target matching quality, fabrication requires non-overlapping
actuators. We manually move actuators apart if they cross
after optimization. While these adjustments are relatively small
due to the small cross-section of the actuators, a second
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Fig. 5. Muscle characterization. Experimental setup, where we control the
pressure and length of an actuator, and measure the resulting contractile force
(left). Plot showing measured data points as well as the curves from our fitted
model (right). As described in the text, the muscle strain ε is a function of p.
Pressure values are in kPa. Note that only some pressure values are shown,
for clarity.

optimization with a non-overlapping penalty between pairs of
actuators could be performed.

To keep actuation pressure values in a permissible range
[0, pmax], we again use a barrier function, implementing the
bound constraints in Eq. 4 with an objective term. Implicitly
enforcing equilibrium constraints, and enforcing bound con-
straints with a penalty, we pave the way for unconstrained
optimization with a quasi-Newton with a standard BFGS
approximation of the Hessian [28].

VI. MODELING ARTIFICIAL MUSCLE ACTUATORS

We model artificial muscles as fibers routed through the
body, coupled to the surrounding body. This is in contrast to
cable-driven systems [10], where there is sliding between the
cable and body. We assume that the actuators have a constant
size in the radial direction, and we therefore do not account
for the radial bulging of McKibben actuators.

Specifically, in this work, we consider thin (3 mm di-
ameter) McKibben pneumatic artificial muscles (S-muscle,
Japan). However, unlike typical applications, our muscles are
embedded in silicone, meaning that fibers are not free to slide
against each other. Thus, although there exist models for (un-
embedded) McKibben actuators [25, 26], these are not readily
applicable here.

As introduced previously, we choose to model actuators as
nonlinear rods or generalized springs, where their parameters
as well as their rest length are functions of the muscle activa-
tion variable (pressure, in the case of pneumatic muscles).

Assuming that the actuator is homogeneous along its length,
we perform characterization experiments on a finite-length
sample, and then use this to fit length-invariant parameters
suitable for actuator elements of arbitrary length. We assume
the effect of actuator curvature to be negligible.

We perform a characterization experiment where we mea-
sure the blocking force of the actuator at different pressures,
and for a set of lengths ranging between the length with uncon-
strained deformation at maximum pressure and the maximum
obtainable length. The actuator is coated in a thin layer of
silicone, to emulate its embedding. The experimental setup can
be seen in Fig. 5 (left). We characterize the actuator behavior
up to a pressure of 425 kPa, as increasing the pressure beyond
this caused a significant increase in the actuator failure rate.



To fit our data-driven model to this behavior, we consider
the rest length at zero pressure, and the rest length at non-
zero pressure. Let L(p) be the free deformation (zero-force)
length of the actuator at pressure p, giving the strain ε(p) =
(l/L(p))−1 when the actuator length is l. We also take εL(p) =
(L(p)/L(0))−1 to be the strain relative to the free deformation
state of the actuator at zero pressure (i.e. the “true” rest state
of the actuator). In addition, we define the maximum strain
εmax(p) = (L(0)/L(p))−1 to differentiate between cases where
l is smaller or larger than the maximum length L(0) at zero
force. Recall that the artificial muscle contracts, hence L(p) <
L(0).

Assuming the cross-sectional area Aact of the actuator to
remain constant, we divide measured forces by this area,
then fit a pressure-dependent stress-strain relationship to the
characterization data. At a given pressure p, we observe the
stress to vary linearly with the strain for strains ε ≤ εmax (or,
equivalently, for l < L(0)). Straining the actuator beyond its
rest length at zero pressure, i.e. for ε > εmax, leads to a sharp
rise in the stress (as the fibers become taut), which we model
as quadratic polynomial. Our model for the muscle’s stress
can thus be written as

σ(p, ε(p)) =

{
E(p) ε, ε(p) ≤ εmax(p)

A(p) ε2 +B(p) ε+ C(p), ε(p) ≤ εmax(p)

where “Young’s modulus” E and coefficient A are two-piece
piece-wise linear functions of p, and B and C are set such that
the curve is C1-continuous at εmax(p): B = E − 2Aεmax and
C = Aε2max. We find the appropriate coefficients for expressing
E and B in terms of p using least-squares fitting. The rest
strain εL is approximated with a linear function of p.

The overall fit of the model can be seen in Fig. 5 (right).
The proposed model captures the muscle behavior well, while
requiring only a small number of fitted parameters.

It is interesting to note that in our system, the quadratic
part of the model is only required for cases where there are
multiple embedded actuators, or where other external forces
are acting; under their own actuation, the muscles can only
contract in length.

To use this model in simulations and optimizations, we
integrate to form the strain energy density

Ψact(p, ε(p)) =

{
1
2E(p)ε2, ε(p) ≤ εmax(p)
1
3A(p)ε3+ 1

2B(p)ε2+C(p)ε+D(p), ε(p) ≤ εmax(p).

To preserve C1-continuity, we set the integration constant D
to −

(
1
3Aε

3
max + 1

2 (B − E)ε2max + Cεmax
)
.

For numerical optimization, we require derivatives of this
data-driven muscle model with respect to the pressure p.
Because of the two-piece piece-wise linear approximation
of E and A, the model is not sufficiently smooth. Thus,
to make the strain energy differentiable, we turn these two
pressure-dependent coefficients into C∞ functions featuring
the appropriate oblique asymptotes, as we describe in our
Appendix.

A. Discretizing Muscle Fibers
To discretize the integral in the actuator energy Eact (Eq. 2),

we partition spline curves into line segments (compare with

Continuous Discrete

Fig. 6. Discretizing Artificial Muscles. To discretize actuation fibers (left),
we split them into straight line segments, representing segments with vectors
dj and center points cj (right).

Fig. 6), connecting segment end points with vectors dj , and
averaging them to form their centers cj . We then compute the
rest and deformed length of segments,

Lj(s, p) = (εL(p) + 1) ‖dj(s)‖ and
lj(s,X,x) = ‖F(X,x, cj(s)) dj(s)‖,

to compute their strain εj , and use the midpoint rule to
approximate the integrated actuator energy (Eq. 2). Because
we assume the actuator to be bonded to the surrounding soft
body, the deformed length of an actuator element is the product
of the deformation gradient, evaluated at the segment center
point, and the linear approximation of the segment. Note that
the rest length of segments depends on the pressure. Hence,
we multiply the linear segments with the pressure-dependent
“rest” strain, εL(p), plus one, resulting in the discretized
integral∑

j

Ψact(p, εj)AactLj with εj(s, p,X,x) =
lj
Lj
− 1. (10)

VII. FABRICATION

Robots are fabricated from silicone elastomer (EcoFlex 00-
30, Smooth-On) using a two-step injection molding process,
similarly to [11]. The injection is done with a pneumatic
dispenser gun; compared to gravity-assisted pouring, this
greatly reduces problems of air entrapment, in particular for
complex geometries. The fabrication steps are shown in Fig. 7.
The groove geometry is generated automatically with a script,
given a muscle routing, so the mold design complexity is
independent of the routing complexity. This also means that
little manual effort is required to fabricate molds for alternative
muscle routings (e.g. the two variants of the Tentacle). Molds
are printed on a Stratasys Objet Connex 350. After molding,
the artificial muscles are terminated by attaching a Luer Lock
fitting to one end and sealing the other. We observe good
bonding between the silicone from the two molding steps, and
also between the silicone and the muscle.

We note that the particular artificial muscles used in this
work have, in the rest configuration, a gap of ∼0.5 mm
between the inner silicone tube and the outer braid. While the
gap is filled during the molding process, this introduces some
uncontrollable variation in the muscle position, and therefore
also in the deformation behavior.

VIII. RESULTS

To generate our results, we model the silicone material with
a Neo-Hookean material (Young’s modulus set to 86.4× 103



(b) Muscles placed

Bar

(e) 1st molding step

(h) Molds, 1st molding step

(f) Muscles placed

(i) Molds, 2nd molding step

(c) 2nd molding step (d) Molds, 1st molding step

(g) 2nd molding step

(a) 1st molding step

Walking robot

Fig. 7. Fabrication process. Steps and mold designs for Bar (Fig. 10) and
Walking robot (Fig. 16). First, the robot is fabricated with grooves for the
artificial muscles (a, e). The muscles are then placed in the grooves (b, f),
and overmolded (c, g). Note that for (h) and (i), one mold part is not shown.

Pa; Poisson’s ratio to 0.47), and set the MLS radius r to a
globally constant value of 1.7 times the average edge length
of the volumetric mesh. We use a linear MLS basis for our bar,
Tentacle and Walking robot examples, and a quadratic basis
for our Continuum robot.

For the data-driven actuator model, we use two line seg-
ments with slope-intercept pairs (−549.92, 73.068 × 106 Pa)
and (26.36, 4.40×106 Pa) to represent E(p), and the two pairs
(−23.91 × 103, 4067.66 × 106 Pa) and (−986.60, 833.51 ×
106 Pa) to represent A(p) (assuming SI units for all quantities).
εL(p) is represented with the line (−0.512 × 10−6, 0). To
smooth functions E(p) and A(p), we use ρ = 104 Pa (see
formula in our Appendix).

A. Prediction Quality of MLS-Formulation

To quantify the prediction accuracy of our technique, we
consider a cantilever bar, hanging under gravity. We run
the same simulation using a standard FEM model and our
MLS-based formulation. As can be seen in Fig. 8 (top),
we observe excellent agreement of predictions at nodes of
standard quadratic elements.

B. Navigating the Design Space

As a validation of our optimization system, and to investi-
gate the sensitivity of our technique w.r.t. initializations that
are far away from the optimal solution, we consider a case
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Fig. 8. Simulation validation (top). We compare the prediction of our
MLS-based formulation and a standard FEM model on a cantilever bar
(length: 100 mm), hanging under gravity; we observe excellent agreement
(RMSE: 1.01 mm; max error: 1.82 mm). Optimization validation (bottom).
We manually place a muscle inside a bar (length: 100 mm) and actuate
it to generate the target deformation. We then perturb the muscle, leading
to a significantly different deformation, and use this as an initialization for
our optimization. The optimization recovers the muscle shape near-perfectly
(RMSE: 0.10 mm; max error: 0.20 mm).

where we know that a perfect solution exists; see Fig. 8
(bottom). We manually place an S-shaped actuator in a bar,
resulting in an S-shaped deformation when actuated. We take
the resulting deformation as our target, and then perturb the
actuator such that a significantly different deformation mode
is seen under actuation. This perturbed muscle shape is then
given as an initial guess to the optimization. As shown in the
figure, the optimization is able to recover the muscle shape
and resulting deformation near-perfectly. Our system therefore
exhibits little sensitivity to initializations, even when the
initialization leads to significantly different deformations. For
this example, we place a tracking curve along the centerline
of the bar.

C. Twisting bar

As a first example of our full pipeline, including physical
fabrication, we consider a bar (length: 129 mm) which is fixed
at one end and undergoing a twisting deformation. Again, we
place a tracking curve along the centerline of the bar, and we
also initialize the actuator by routing it along this centerline.
We then optimize for the actuator routing and the actuation
pressure. The target deformation, resultant optimized actuator
routing, and resultant optimized deformation can be seen in
Fig. 9. For the target, the angle of twist at the distal end of the
bar is 39.3◦. It is important to note that as target deformations
were not generated by embedded artificial muscle actuators,
we can in general not expect targets to be matched perfectly.

We then fabricate the bar, and compare the simulation
prediction to the physical results (see Fig. 10). To compare the
two, we 3D-print the simulation result, capture images of the
two, and overlay them. There is good correspondence between
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Fig. 9. Twisting bar, simulation. The optimization captures the overall
deformation with relatively low error (RMSE: 1.9 mm; max error: 4.8 mm).
The optimization was initialized with a straight muscle.

At rest Actuated Simulation Sim overlay

Fig. 10. Twisting bar, experiment. We 3D-print the simulation result, so
that the results can be overlaid. The simulation matches the physical result
closely, including local undulations along the length of the bar and also the
concavity at the end of the bar.

the two. We highlight in particular the undulations along the
side of the bar resulting from the helical actuator shape, and
also the concavity at the end of the bar, both of which the
simulation captures well. As an additional comparison, we
measure the angle of twist at the distal end of the bar, in
simulation and on the physical bar, and we observe excellent
agreement: both have a twist angle of 28.3◦.

See also the supporting video, where we show the bar being
actuated.

D. Continuum robot

In this example we consider a soft underwater continuum
robot with a cylindrical shape (16 mm diameter, 300 mm
length) that is fixed at one end. Such a robot could be used to
inspect underwater structures. The robot is neutrally buoyant
(water is used as a working fluid in the actuators), so the effect
of gravity is negligible. We initialize the robot with a single
actuator along its medial axis, and also place a tracking curve
at the medial axis, along the full length of the robot. As a
deformation target to match, we specify a spatial target shape
which involves bending about multiple axes and continuously-
varying bend curvature. As the continuum robot is rotationally
symmetric, we in this example only track positions along
the tracking curve, and not rotations (in the other examples,
we track positions and rotations along the tracking curve, as
the robots are not rotationally symmetric and the robot twist
matters).

Fig. 11 shows the input, as described above, along with
the result of the optimization. Overall, it can be seen that

rest
shape
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Input

initial muscle 
routing; tracking
curve: along 
medial axis of 
robot

green: target

Target matching

Optimized Result

target shape
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routing

Fig. 11. Continuum robot, simulation The target shape is spatial and
requires bending about multiple axes. The optimized result matches the
specified target well: RMSE 1.7 mm, max error 3.2 mm. Note that for this
example, as it is rotationally symmetric, we report the target matching error
along the tracking curve.

the optimization result matches the desired target shape well
along the full length of the robot. Interestingly, the maxi-
mum target matching error as computed between the target
mesh and optimization result (which is not twist-invariant) is
significantly larger at 12.1 mm, due to differences in twist.
In informal experiments, we observed that if we asked the
optimization to also match the twist values for this robot,
we obtained significantly worse overall performance. This
illustrates the importance of specifying targets that pertain to
the robot’s function: in this example, twist is not important to
the function of the robot, and leaving it unconstrained allowed
the optimization to find a better solution overall.

The robot is fabricated, and experimental results can be seen
in Fig. 12. As the experiment is conducted under water, a
Mocap system cannot readily be used for tracking. Instead,
we 3d print the simulation result and mount that at the same
location, and then overlay this onto the robot—see rightmost
panels in figure.

It can be seen that overall, there is good agreement between
the fabricated robot and the simulation result. The maximum
target-matching error, estimated using image analysis tools, is
9.0 mm. See also the supporting video.

E. Tentacle

The octopus tentacle is a well-known example from nature
of exploiting softness, and also a well-studied example in Soft
Robotics (see, e.g., [32, 33]). We start with a straight tentacle
(length: 298 mm), and generate a target deformation which
combines bends about multiple axes to produce a complex
spatial shape.

To illustrate how tracking curves allow the user to tune the
optimization result, we show results for two different cases.
For the full-length condition, we place a tracking curve along
the full length of the tentacle, which causes the optimization to
try to match the position and orientation of the tentacle along
its entire length. For the tip only condition, we place a tracking
curve at the tip of the tentacle only, so that the optimization
will only try to match the position and orientation of the tip.

Putting this into context; for a robot executing a task such
as grasping or locomotion where only the tip interacts with
the environment, it is more important to control the end
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Fig. 12. Continuum robot, experiment The robot is submerged in water. The
right-hand panels show the 3d-printed simulation result, overlaid the fabricated
robot.

effector position. However, for full-bodied locomotion such
as swimming, it will be important to control the displacement
everywhere.

The optimization is initialized with a single muscle along
the centerline of the tentacle, and the results of the optimiza-
tion for the two conditions are shown in Fig. 13. Again, the
target deformation was created manually by a user, and can
therefore not be expected to be matched perfectly. In particular,
the McKibben artificial muscle actuators unavoidably induce
length contraction under actuation. With this in mind, the
performance of the optimization is good for both conditions.
The results match expectation, with the tip only condition ex-
hibiting smaller error at the tip while the full-length distributes
the error more evenly.

We fabricate both versions of the tentacle, and submerge
them in water. We use water as a working fluid in the actuators,
instead of air, to prevent unwanted buoyancy. The results are
shown in Fig. 14, and we also refer to the supporting video.
As for the twisting bar, we 3D-print the simulation result and
overlay images of the two results. In general, we observe
reasonable agreement between the simulated and physical
results. In particular, it is worth noting the local undulations
along the length for the tip-only condition which the simulation
predicts very well. Using image processing software, we find
the maximum target matching error to be 20.5 mm for the
full-length case and 40.1 mm for the tip-only case.

It can be seen that in both conditions, the error is largest at
the distal end of the tentacle. This can be explained in part by
the accumulation of error along the tentacle, but other likely
sources of error are the modeling assumption of the negligible
size of the actuator in the radial direction, and the MLS-shape
functions that are known to not work well for rods [22] (co-
linearity of FE DoFs can lead to rank-deficiencies in matrices
G). Towards the distal end, where the tentacle is thinnest,
it is likely that these assumptions introduce additional error.
More specifically, the previous result demonstrated good target

TargetTracking Curves
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green: target

Error
Visualization
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tip only

full-length tip only
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Fig. 13. Tentacle, simulation. We study two conditions: for full-length we
place a deformation sensor along the length of the tentacle, and for tip only
we only try to match the target near the tip. The results match expectation,
with tip only having smaller error at the tip but larger error elsewhere. Full-
length: RMSE: 20.3 mm; max error: 29.5 mm. Tip only: RMSE: 24.0 mm;
max error: 39.6 mm. Note that this error is reported for the full mesh, not
just at the tracking curve.

matching performance for a robot of diameter 16 mm (5.3×
actuator diameter), but we observe a larger error at the tip of
the tentacle, which has diameter 6 mm (2× actuator diameter).

F. Walking robot

In this example, we consider an entirely-soft 4-legged walk-
ing robot (body length: 42 mm). We take as input the robot
geometry, and to achieve a walking gait we define two targets
of the body: bend and twist. As can be seen from Fig. 15, the
twist deformation swaps which legs are touching the ground,
and the bend deformation causes the robot to step forward. A
gait cycle is then formed by {rest, bend, bend+twist, twist}.
We make the somewhat crude assumption that we can achieve
a bend+twist by actuating bend and twist simultaneously; the
results in Fig. 15 show that, in this case, this assumption
is reasonable. As the mass of the robot is small, we can
consider the effect of gravity to be negligible. As we seek to
route actuators through the body, this means that the legs will
undergo negligible deformations, so for the optimization we
consider the body in isolation. We then simulate the full robot,
including the legs, with the optimized muscles, confirming that
the deformations are still as expected. For the optimization of
both the bend and twist poses we fix one end of the robot
body and place a tracking curve at the other end of the body,
as seen in the figure.
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Fig. 14. Tentacle, experiment. See Fig. 13 for the two conditions; full-length
and tip only. The tentacle is submerged in water, and the rightmost panels
show the 3D-printed simulation result, overlaid the fabricated tentacles.
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Fig. 15. Walking robot, simulation. For the optimization, we consider
just the robot body. We define two target poses, bend and twist. A single
deformation sensor is used. After the optimization, we add the optimized
actuators to the full robot simulation and simulate into the two poses. We also
run a forward simulation of the bend+twist pose, which is the superposition
of bend and twist actuation. The result is a simple walking gait cycle.

For the bend deformation, we initialize the optimization
with a single actuator along the medial axis of the body. For
the twist deformation, we take inspiration from the Twisting
Bar results (Fig. 9) and use a helical routing as the initial-
ization. In order to enable a symmetric solution that does not
introduce unwanted bending, we initialize a pair of actuators.
This illustrates how our system supports co-optimization of
multiple actuators.

We then combine the actuators resulting from the bend and
twist optimizations. Our system does not check for collisions
between actuators, so collisions are resolved manually in a
post-processing step by offsetting one of the colliding actu-
ators. Again, a forward simulation of the processed result is
used to check that the function is preserved.

Fig. 16. Walking robot, experiment. The body length of the robot is 42 mm.
The robot achieves a forward velocity of 7.9 body lengths/min. See also the
supporting video. The two colors on the robot body come from the two-step
molding process, see Fig. 7.

TABLE II
KEY STATISTICS.

#tets #DoFs sim (s) opt (min) opt (iter)

Bar 2’442 702 63 169 381
Cont. Rob. 2’033 707 539 62 121
Tent. (full) 902 330 48 88 365
Tent. (tip) 47 58 463
Rob. (bend) 5’553 1’301 122 76 18
Rob. (twist) 97 85 31

#tets: number of tetrahedra; #DoFs: number of FE DoFs; sim (s): simulation
time in s, for optimized actuator and starting from rest pose; opt (min):
optimization time in min; opt (iter): optimization iterations.
Bar: Twisting bar; Cont. Rob.: Continuum robot; Tent.: Tentacle; Rob:
Walking robot (body only).

The four stages of the gait cycle for the simulated robot
are shown in Fig. 15. The fabricated robot is presented in
Fig. 16. See also the supporting video. The physical robot
is driven using a valve array (Festo VTUG series) controlled
by an Arduino, and achieves a forward velocity of 7.9 body
lengths/min.

G. Performance

All simulations and optimizations were performed on a
machine with an Intel Core i7-7700 processor (4 cores, 4.2
GHz) and 32 GB of RAM. We summarize key statistics for the
different demonstrators in Tab. II. The walking robot requires
fewer optimization iterations than the other demonstrators due
to the relative simplicity of the bend deformation, and the
informed initialization with a helical routing for the twist
deformation.

IX. CONCLUSION

This paper has introduced an automated system for op-
timally routing one-dimensional artificial muscle actuators
through arbitrary hyperelastic robots, so that a desired de-
formation behaviour is matched as closely as possible. The
optimization is built on a differentiable finite element model,
which uses MLS to achieve a C3-continuous deformation field,
allowing artificial muscles to move freely through element
boundaries during the optimization. Furthermore, we have
presented a simple data-driven model which captures the



behavior of embedded artificial muscles well, and can readily
be integrated with standard finite element models.

As the system uses a finite element model, it generalizes
well to arbitrary robot geometries. We expect the data-driven
actuator model to generalize well to other types of one-
dimensional artificial muscles, for example shape memory
alloys or twisted Nylon actuators [1].

More generally, our work illustrates the potential of compu-
tational design tools for tackling soft robotic design problems;
enabling designs and deformation behaviors that would be
very difficult to achieve otherwise. To date, the field of Soft
Robotics has been driven primarily by experimental research
and prototype-driven development [34, 35, 36]. However, as
the field advances, and the complexity of the tackled problems
grows, we envisage that simulation and optimization will be-
come increasingly important tools in the robot design process.
The generality of these tools to handle arbitrary robots and
geometries will be an important factor for their uptake.

A. Limitations and Future work

As our method integrates well with standard finite element
simulations, it would be straightforward to combine this
with multi-material robots, for more extreme deformations.
In particular, there are recent results in multi-material, or
meta-material, optimization [37, 9] that it would be exciting
to combine with our approach in order to co-optimize the
material distribution along with the actuation. This would also
require adaptation of the fabrication pipeline.

Computational design tools are particularly well suited for
emerging fabrication technologies, such as 3D printing or
direct ink writing, which show great potential for fabricating
soft robots [35]. This could enable large and complex actuator
networks to be produced at the click of a button, and one
can also envisage a combination of actuation and sensing [11]
networks.

In our presented pipeline, the user prescribes the number
of actuators along with their entry and exit locations of the
actuators on the robot body. This is convenient for integrat-
ing other considerations, e.g. number of available pneumatic
channels, keeping entry/exit points away from functionally
or visually important areas, and accounting for supply tube
routing. However, in particular for larger and more complex
systems, an interesting avenue for future work would be
to also optimize the number of actuators, and to automate
the initial actuator routing. The work in [11] could provide
a starting point for how to tackle the discrete problem of
adding/removing actuators, and also describes a method for
automated initialization. Further to this, we have not fully
explored the space of optimizing for multiple deformation
targets and multiple muscles—in particular, it is interesting
to consider if N targets can be matched with < N muscles.

For our tentacle example, we observe a sim-to-real gap at
the thin tip. For rods and shells, FE degrees of freedom are
close to co-linear or co-planar, resulting in rank-deficiencies
in computations of MLS shape functions. The generalized
moving least squares approach described by Martin et al. [22]
could mitigate this problem. Moreover, for meshes with

different-sized elements, an adaptively chosen MLS radius
could improve performance, and simulation stability.

As illustrated by our results, the modeling assumption of
the actuator having negligible size in the radial direction
breaks down as the robot becomes too thin. Our results
indicate that this assumption is reasonable for a ratio of robot
diameter to actuator diameter of ∼5, but as this ratio becomes
smaller one should expect sim-to-real mismatches to increase.
A refined model, where the finite radial dimension of the
actuator is accounted for by “cutting away” the surrounding
matrix material, is non-trivial to implement as our optimization
requires the actuator to be able to move smoothly through the
underlying mesh. One approach could be to leverage eXtended
Finite Element Modeling (XFEM) [38].

Furthermore, we can attribute some of the sim-to-real gap to
tolerances in the fabrication process. As discussed previously,
the most prominent source is likely to be the ∼0.5 mm gap
between the inner silicone tube and the outer braid of the
actuator. For context, in the Continuum robot, the muscle is
a mean distance of 1.3 mm away from the medial axis of the
robot. As we purchased the actuators off-the-shelf, this was
not something we could improve on, however, there is not a
fundamental reason why this could not be improved.

In this work, we have considered the deformation behavior
to be the end goal. However, our system could also be used as
a building block in a more task-driven optimization problem
— for example the grasping problem considered by [5].

APPENDIX

To turn a two-piece continuous piece-wise linear function

f(x) =

{
ax+ b, x ≤ xintersec

cx+ d, x > xintersec
(11)

with intersection point xintersec = − d−bc−a , into a C∞ function,
we use the smoothed version

ρ c−a2 ln
(

cosh
(
x−xintersec

ρ

))
+ a+c

2 x+
(
b+d
2 + ρ c−a2 ln(2)

)
where ρ controls the width of the transition between the two
pieces.
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[29] J. Nitsche, “Über ein variationsprinzip zur lösung von dirichlet-
problemen bei verwendung von teilräumen, die keinen randbedingungen
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