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Singularity-Aware Design Optimization
for Multi-Degree-of-Freedom Spatial Linkages

Guirec Maloisel1,2, Espen Knoop1, Bernhard Thomaszewski2, Moritz Bächer1, Stelian Coros2

Abstract—We introduce a singularity-aware design optimiza-
tion method for spatial multi-degree-of-freedom mechanical link-
ages. At the core of our approach is an adversarial sampling
strategy, which actively detects singular configurations within
the targeted operation range. The detection of singularities
in both forward and inverse kinematics allows for two-way
bijective mappings between input and output trajectories on our
optimized designs, thus enabling robust control. We demonstrate
our approach on a set of simulation examples and provide
additional validation on physical prototypes.

Index Terms—Mechanism Design, Kinematics, Optimization
and Optimal Control

I. INTRODUCTION

PARALLEL robots and kinematic linkages are ubiquitous
in robotics, used in robot hands, grippers, and parallel

manipulators. They have been well-studied in the literature,
with the seminal work by Merlet [1] providing a compre-
hensive overview. However, as detailed in Chap. 11 of [1],
the design of such linkages remains a highly challenging task
despite having received significant attention; in particular for
non-planar mechanisms with multiple degrees of freedom.

In the wake of the pioneering work of Burmester and
Freudenstein on four-bar linkages [2, 3], optimal design
problems were systematically studied for several families
of parallel mechanisms, such as planar manipulators [4, 5],
spherical manipulators [6], Delta robots [7, 8, 9] or 6-Degree-
Of-Freedom (6-DOF) platforms [10, 11, 12, 13]. While notable
effort has been made towards a unified methodology for such
problems [7, 14, 15], manual derivations and tailoring to each
type of mechanism are still largely required.

In contrast, the automatic design of arbitrary single-DOF
linkages has recently received special focus [16, 17, 18, 19,
20, 21]. While fewer assumptions are made on the precise type
of mechanism, the restriction in mobility can be found very
limiting for more general mechanisms. Extending these meth-
ods is however non-trivial, as the multi-DOF case introduces
an additional set of challenges.
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Fig. 1. Our singularity-aware design optimization pipeline takes as input a
mechanical linkage and optimizes joint locations such that a target workspace
is reachable and free from singularities. The unoptimized physical neck
assembly fails due to a forward singularity, while the optimized assembly
functions as desired. Note how subtle differences in the mechanism geometry
yield drastically different behavior, stressing the need for a computational
method.

For the single-DOF case, a common design task is to pro-
vide a target trajectory that an end-effector should track. Dense
sampling can then be used to ensure sufficient motion approx-
imation and absence of singularities in the operating range.
From a computational point of view, this approach quickly
becomes impractical with a multi-dimensional workspace. Fur-
thermore, the coupling between actuators along with geometric
nonlinearities in the mechanism typically result in highly com-
plex configuration spaces. Feasible regions in this space often
enclose infeasible ones, and singular configurations divide the
space into several kinematic branches with arbitrarily complex
boundaries. The navigation of this space is often challenging,
requiring singularity-aware path-planning [22, 23, 24, 25]; see
also [26] and [27].

Several methods exist for determining the locations and
types of singularities [28] as well as the different branches
[29, 30] of a given mechanism. However, none of them are
readily applicable for design optimization where the config-
uration space topology changes as a function of the design
parameters.

In this work, we develop the theoretical and algorithmic
basis for optimization-driven design of spatial multi-motor



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2021

mechanisms. To this end, we devise a singularity-aware inverse
kinematics algorithm that promotes reachability of configu-
rations on the boundary of the target region. We augment
this formulation with a new adversarial sampling strategy that
actively tracks down forward and backward singularities [31]
in the operating range. The overarching goal of this approach
is to generate optimized designs with two-way monotonic
mappings between motor values and output variables around
all configurations in their target range. These properties, in
turn, guarantee that any trajectory within the target range is
feasible and singularity-free, thus eliminating the need for
specialized path planning.

II. OVERVIEW AND BACKGROUND

The input to our method is a spatial mechanical link-
age consisting of rigid components whose relative motion
is constrained by a set of passive joints and actuators (see
Fig. 1 input). While this input is assumed to be kinematically
feasible, it cannot reach all points in a target task space
and may contain singularities in this space with respect to
backward and forward kinematics. Our goal is to change the
design of the linkage to ensure that all points within the task
space can be reached with finite motor torques, and that the
end-effector can apply forces in all directions at all points
within this output space. Our method is agnostic to how
the task-space is defined—positions, angles, or combinations
thereof—as illustrated by our examples.

See Fig. 2 for an illustration of the different types of
singularities, and how they introduce non-bijectivity in the
mapping from motor space to end-effector space trajectories.
We will show similar plots throughout the paper, visualizing
proximity to a singular configuration using a color map: the
brighter the color, the closer we are to a singular configuration.
Black regions represent infeasible configurations, and contours
shown in magenta delineate feasible parts of the target range in
end-effector space (g), together with its projection onto motor
space (f).

A. Forward Kinematics

To represent a linkage, we rely on a maximal coordinate for-
mulation where the position and orientation of each component
is represented with a 3D point and a unit-length quaternion,
collected in a 7-coordinate state vector si. For a linkage with
n components, the degrees of freedom are collected in a 7n-
vector s.

Passive joints are represented with a set of constraints
Ck(si, sj) (= 0 if satisfied), restricting the relative motion of
two connected components i and j [17, 32]. For example, for
a revolute joint, we formulate five constraints: three to ensure
that the joint always remains at the same location on either
component, and two to restrict rotations about two of the three
axes of rotation.

For active joints or motors, we have additional actuation
parameters, fully restricting the relative motion between pairs
of components once the parameter is set. Representing the
actuation parameters with a vector ak, we can formulate
constraints of the form Ck(ak, si, sj). For example, for a
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Fig. 2. Singularities. A five-bar mechanism, shown in its rest pose in (a),
can exhibit both forward (b) and backward (d) singularities. In (f) and (g), we
visualize the proximity to singularities (fsing) in both motor space and end-
effector space, with poses (a)-(e) as indicated. Forward singularities (b) lie at
the limit of feasible configurations in motor space, and yield unbounded motor
torques. Backward singularities (d) lie at the limit of the feasible region in end-
effector space, and cause non-bijectivity in the input to output mapping. See
indeed how states (c) and (e) are on opposite sides of singularity (d), i.e., they
have the same end-effector position but different motor values. Additionally,
in pose (d), the mechanism is unable to produce a non-zero force at the end
effector in the direction of the aligned links.

revolute actuator, ak has a single entry, representing the
position of the actuator about the revolute axis. The set of
actuator values, collected in vector a, span the motor space in
Fig. 2.

Collecting all constraints in a vector CFK(a, s), we can then
solve for the state of the linkage for given actuator values a,
by minimizing the nonlinear least squares problem

min
s
fFK(a, s) with fFK(a, s) =

1

2
CTFKCFK (1)

with a standard Levenberg–Marquardt implementation [33],
outputting failure if a non-zero local minimum is obtained.

To guarantee that the mechanism stays predictable, and con-
trollable with finite actuator torques, one must keep a distance
from forward singularities, by ensuring that the constraint
Jacobian ∂CFK

∂s always has full rank.

B. Backward Kinematics

To evaluate reachability objectives, we introduce backward
kinematics variables b, which correspond to a non-redundant
parameterization of the mechanism’s output, and span the end-
effector space in Fig. 2. Each variable bk is either a Cartesian
coordinate of a point attached to component i, or an angle at a
joint connecting components i and j. For example, for the five-
bar linkage in Fig. 2, it is natural to specify a Cartesian target
range for the end-effector’s position. We then define backward
kinematics constraints as follows: we replace all active joint
constraints in CFK with their corresponding passive joints [32].
We then add the constraint Ck(bk, si) or Ck(bk, si, sj) for
positional or angular variables bk.1

1In practice, these additional constraints are implemented by measuring
the value bk(s) on the current state, and evaluating its signed distance to the
target value, taking into account modulo 2π values for angles.



MALOISEL et al.: SINGULARITY-AWARE DESIGN OPTIMIZATION FOR MULTI-DEGREE-OF-FREEDOM SPATIAL LINKAGES 3

The collected constraints CBK(b, s) evaluate to zero when
the target point b in end-effector space is reached, and can
be plugged in the same algorithm as above to solve backward
kinematics. In the physical system, this corresponds to manu-
ally driving the mechanism using its end-effector, forcing the
motors to follow. The actuator values a(s) to reach the same
configuration in the forward direction can be read off the out-
put state, enabling, in the absence of singularities, the control
of the mechanism directly from its end-effectors for the same
cost as solving forward kinematics. Additionally, for a state
satisfying forward kinematics constraints, but not backward
constraints, the residual value of the objective fBK = CTBKCBK
measures the distance to the target b.

To guarantee that an end-effector position is mapped
uniquely to a motor configuration, thus enabling robust con-
trol, and to ensure that forces can be applied in arbitrary
directions at the end-effector, one must stay a safe distance
away from backward singularities, by controlling that the
corresponding Jacobian ∂CBK

∂s has full rank for all traversed
states.

C. Design Optimization

We take as input a desired range for all backward kinematics
parameters b. The mechanism is parameterized by the position
and orientation of all joints in the initial configuration of
the linkage. A reduced set of parameters taking into account
design constraints (fixed joints, symmetries, etc.) is collected
in a vector p. We then ask for parameters that lead to a design
where (1) all points in a target range can be reached, (2) there
are no singularities in the target range where motor torques
would go to infinity, and (3) the mapping from end-effector or
task space parameters to actuator values is one-to-one around
all points such that forces in arbitrary directions can be applied
at the end-effector. To evaluate the latter two requirements, we
next discuss a metric that measures the distance to either kind
of singularity.

III. MEASURING PROXIMITY TO FORWARD AND
BACKWARD SINGULARITIES

To detect and ultimately avoid singular configurations, we
can study sensitivities of the state with respect to either
forward or backward kinematic parameters. Upon successful
solution of the forward kinematics problem, we obtain a state
s at which the gradient of objective fFK is zero. The sensitivity
of the state with respect to the actuation parameters a is given
by the implicit function theorem

ds
da

= −
(
∂2fFK

∂s2

)−1
∂2fFK

∂a∂s
. (2)

As long as the constraint Jacobian is not rank deficient2,
the mapping from a to s is locally well-defined, and small
changes to actuator values lead to changes in states bounded in
magnitude. Forward singularities correspond to degeneracies
in this mapping and to unbounded sensitivities. Analogously,

2If fFK = 0, the Hessian ∂2fFK
∂s2

rewrites
(

∂CFK
∂s

)T ∂CFK
∂s

, so rank
deficiency of the Hessian can be studied directly on the constraint Jacobian.

we can compute the sensitivity of states with respect to
end-effector parameters, ds

db , using the backward kinematics
objective.

Both uni-directional mappings are thus well-defined, hence
bijective, around non-singular configurations. Provided sin-
gularities are avoided, these local mappings can be stitched
together to ensure a non-ambiguous translation of any motor-
space trajectory into the corresponding end-effector motion,
and vice versa. 3 In particular, complex path-planning consid-
ering multiple kinematics solutions is unnecessary.

To measure proximity to either forward or backward singu-
larities, a candidate objective sums up the inverse of the two
smallest singular values of the constraint Jacobians

fsing(a,b, s) =
1

σmin(
∂CFK
∂s )

+
1

σmin(
∂CBK
∂s )

. (3)

As we only consider states satisfying the constraints, values
for a, b can be read off the state s, and we write fsing(s).

As noted in previous work, e.g. in [10], quantities with
inconsistent units (distances vs. angles) appear in kinematic
constraints and variables, rendering fsing physically mean-
ingless, unless the state s and constraints CFK and CBK are
homogenized. To do so, we scale constraints and variables
that measure distances by the inverse of a reference length,
set to the diameter of the initial mechanism (i.e., the largest
distance between any pair of points on the mechanism).4

IV. EVALUATING THE PERFORMANCE OF A DESIGN

Given a design with fixed parameters, we must evaluate
the linkage with respect to our singularity-free reachability
target. To this end, we introduce a sparse sampling strategy,
which selects relevant locations at which to evaluate (a) fBK,
to control the reachability of the target range, defining IK
samples, and (b) fsing, to enforce singularity-free motion,
defining adversarial samples.

A. Evaluating Reachability

To evaluate if all desired locations can be reached by a given
end-effector, we sparsely sample the boundary of the range
in end-effector space, resulting in a set of target points bt.
We then solve for the actuation parameters that minimize the
distance to these samples while staying a safe distance from
singular configurations and fulfilling our forward kinematics
objective to first-order optimality, using a custom Inverse
Kinematics (IK) formulation

min
a
fBK(b

t, s) + f csing(s) s.t.
∂fFK

∂s
(a, s) = 0. (4)

The culled singularity metric f csing equals fsing for values above
a user-specified threshold α+, smoothly transitioning to zero

3Note that the global map from motor to end-effector values can be
non-bijective even in singularity-free regions: there can be singularity-free
paths connecting distinct kinematics solutions, see e.g. [26]. This is however
not a problem for non-ambiguous control as long as the mapping between
trajectories in these two spaces is bijective.

4The chosen reference length was validated by plotting the obtained profiles
for fsing, and proved sufficient for all our examples. A more detailed study
might be needed for corner cases.
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Fig. 3. Comparative plot of fsing, fcsing, fasing over a segment of motor space
for the initial design of the finger assembly, featuring a singularity at the
origin. For fsing > α+ (left of configuration a), the three metrics coincide.
For fsing < α− (right of configuration c), fcsing is zero. Configuration b
corresponds to a local minima in fasing to which adversarial samples will
converge, attained when fsing = αt. By picking αt > α−, we ensure it falls
within the active domain of fcsing.

at a cut-off threshold α− (see Fig. 3; Appendix A) to avoid
perturbing IK results away from singularities.

To numerically solve this problem, we make use of the
implicit function theorem (Eq. 2) to compute the analytical
gradient of the objective with implicit dependence s(a), and
finite differences for the singularity objective. For minimiza-
tion, we use a standard quasi-Newton scheme [33], with the
starting point set to the initial state of the mechanism. The
result is a set of IK samples atIK. The residual distance to the
targets bt indicates the overall coverage of the target range by
the current design.

Occasionally, a too large step in minimization may lead to
the crossing of a forward singularity despite the barrier term
f csing. This is resolved by the use of adversarial samples to
detect the crossed singularity, as explained next.

B. Detecting Singularities with Adversarial Sampling

Starting from every IK sample atIK in end-effector space,
we identify a potential singularity in a local neighborhood by
solving

min
a
fasing(s) +R1(a) +R2(s) s.t.

∂fFK

∂s
(a, s) = 0. (5)

The attractive singularity metric fasing is a warped version of
fsing that attracts adversarial samples towards singularities, but
is repulsive at short distances (see Fig. 3; Appendix A). To
keep the search space to a local neighborhood, we add a
first regularizer R1 = 1

2‖a− atIK‖2 that keeps the adversarial
sample close to atIK. A second regularizer R2 keeps the
corresponding end-effector point b(s) within the targeted end-
effector space (see Appendix B). The relative importance of
the two regularizers is controlled with weights set by the user.
The rationale behind introducing R1 is to prevent adversarial
samples from travelling to separate regions of motor space
whose projection in end-effector space are also in the target
range, thus undetected by R2. See for instance configuration
(e) in Fig. 2.

This results in a coarse set of adversarial samples atadv.
A non-zero value of f csing at these locations indicates the
existence of a singularity in the range. To reduce the likelihood
of missing singularities, we optionally add samples bt in
the interior of the end-effector space. 3-4 samples in total
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Fig. 4. Result of IK (white markers) and adversarial sampling (magenta
markers) on the initial design of our finger mechanism example, visualized
in motor (left) and end-effector (right) space. Note how one IK sample
crossed a forward singularity with a too big step during minimization of
Eq. 4. Without adversarial sampling, and if the same happened to the two
neighbouring reachability samples, inverse kinematics would not suffice to
detect the deficiency of this design.

per dimension have proven sufficient for effective design
optimization as we demonstrate with several examples in our
Results section.

Fig. 4 illustrates a result of IK + adversarial sampling, in
motor space and end-effector space.

C. Evaluating Overall Performance

To evaluate the performance of a design, we then add
together the reachability performance and the proximity to
singular configurations within the target range

fdesign =
1

#t

∑
t

fBK(b
t, stIK) + f csing(s

t
adv), (6)

where stIK, s
t
adv are the states corresponding to atIK,a

t
adv.

If this objective takes on a value of zero, the design can
reach the user-specified end-effector range without getting
trapped in a singularity, uniquely mapping actuator parameters
to end-effector positions along all trajectories within the range.

V. ENERGY MINIMIZATION

The core part of our design optimization is concerned
with minimizing fdesign over the space spanned by the user-
selected design parameters p. To encourage small deviation
from the initial design p0, we add a standard regularizer of
the form 1

2 ‖p− p0‖2. We solve this problem with a stochastic
optimization method, since several aspects of the problem
prevent the use of classical gradient-based methods.

More specifically, derivative computations are made unsta-
ble by the sparsity of the sampling scheme: for similar values
for the design parameters p, the samples could converge to
different local minima. Some exploratory profile plots of fdesign
along components of p revealed almost flat portions with
sudden jumps at their boundary, corresponding to a topology
change in motor or end-effector space. Furthermore, analytical
derivatives are impractical to compute due to the chain of
implicit dependencies between fdesign, adversarial sampling,
IK sampling and FK; and finite differences are expensive to
evaluate due to the multiple sub-problems that need to be
solved.
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Fig. 5. Five-bar linkage.

Based on these insights, we implemented a first algorithm,
which we refer to as partial gradient descent: we evaluate
the gradient of fdesign with frozen sample locations atIK,a

t
adv,

thus removing the problematic partial derivatives. The samples
are then recomputed after a (partial) gradient descent step.
This algorithm can solve simple problem instances, but has
no provable convergence and fails in more complicated cases.

Encouraged by the promising results of stochastic optimiza-
tion for mechanism design in existing work [34, 35, 36], we
chose to rely on Particle Swarm Optimization (PSO) [37],
which requires no derivatives and is known for its robustness
towards local minima. To leverage the partial information still
available on the derivatives of fdesign, and to improve on vanilla
PSO, we use a modified scheme: for each particle and with
50% probability, we take either a regular PSO step, or a partial
gradient descent step as described above. This allows us to
tweak the probability distribution towards the exploration of
locally interesting directions, while leaving room for random
exploration.

On our examples, PSO optimization was run with 20
particles initialized randomly around the initial design. The
learning rate was set to 1, both acceleration coefficients to
2, and the inertia coefficient was initialized to 0.9, decreas-
ing linearly until reaching 0.4 at a hundred iterations. The
algorithm is stopped after a satisfactory design is found (with
fdesign ' 0 and a sufficiently low regularizer value), and
additional iterations do not lead to further improvements.

VI. RESULTS

We demonstrate in this section the efficacy of our method
on several examples. We refer the reader to the accompany-
ing video for supplementary visual comparison of initial vs.
optimized designs, together with sample motions.

A. Five-Bar Linkage
As a first example, we optimize a five-bar robot to be able

to reach any point inside a rectangular box. The initial and op-
timized designs are shown in Fig. 5. During the optimization,
we ask for the design to remain symmetric.

As can be seen in the plots in Fig. 2, the initial design suffers
from a forward singularity crossing its range. In addition, only
part of the range is within reach. Both problems are resolved
in the optimized result, see Fig. 6.
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Fig. 6. Motor space (left) and end-effector space (right) plots for the optimized
five-bar linkage example. Comparison with the equivalent plots in Fig. 2
reveals a correction of the initial defects (too small workspace, forward
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seen from the perspective of the motor or end-effector illustrates a two-way
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Fig. 7. Finger.

B. Finger Assembly

In this example, we optimize a 2-DOF mechanism that
drives the metacarpophalangeal (MCP) joint of a finger, with
the goal of increasing the feasible range of motion. See Fig. 7
for the initial and optimized designs. As can be seen in Fig. 8,
the optimized design pushed away the singularity limiting the
range of motion of the initial design. A higher regularizer
weight was used here than for other examples due to the
spatial nature of the assembly, in order to keep the assembly
compact. In the supplementary video, we show the initial and
optimized design executing a motion profile. To control the
initial design, we used our singularity-aware IK that comes as
close as possible to the desired target motion while not passing
through singularities.

C. Two-Motor Neck Assembly

We next considered a 2-DOF neck assembly, capable of
pitch and roll motions. The initial design suffers from a for-
ward singularity when tilting forward, as illustrated in Fig. 1.
Getting too close to this causes catastrophic and unrecoverable
failure. See also Fig. 9 for details. During the optimization,
we asked the design to remain symmetric.

To illustrate a good correspondence between our simulations
and reality, we fabricated the initial and final designs and ran
motion sequences, as shown in the supporting video. Again,
we used a singularity-aware IK for the initial design.
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Fig. 8. Motor space (left) and end-effector space (right) plots for the optimized
finger assembly example. Comparison with the equivalent plots in Fig. 4 show
that the forward singularity limiting the initial motion has been pushed out
of the target range.
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D. Two-Motor Jansen Leg

The Jansen linkage is a well-known example of a 1-DOF
leg mechanism with a distinctive visual appeal, that performs a
fixed walking cycle. With the addition of a second actuator, the
mechanism should be able to perform arbitrary gait cycles—
essential for a walking robot—however due to the complex
kinematics it is non-trivial to make this design change.

In this example, we start from the 1-DOF Jansen leg, and
naively place a second motor by moving the grounded joint
in the 1-DOF version onto a crank. See Fig. 10 and also
the supporting video. We define a rectangular target region
for the end-effector. The initial design suffers from forward
and backward singularities in the target region, which the
optimization is able to remove.

To demonstrate arbitrary leg motions, we execute three
different gait cycles. We also created a physical version of
the optimized leg, to validate our modeling.

E. Three-Motor Neck Assembly

To evaluate the scalability and generalization capabilities of
our algorithm, we augmented the neck mechanism presented
above with an additional DOF, controlling the yaw angle
(see Fig. 11). Our optimization pipeline worked as expected,
and corrected the singularities and range limitations of the
initial design. We can therefore expect that our method will
generalize well to higher dimensions.

To examine the optimization results, we adapted our 2D
visualization method to display a 2D section of the 3D space.
Please see the supplemental video.5 It can be seen that the

5In the visualization, some discontinuities between successive section views
can be observed. This does not affect the optimization result, as this is an
artefact of the visualization only, which arises from the overlapping projections
of complex topologies.
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Fig. 10. Two-motor Jansen leg.
(a

) u
no

pt
im

iz
ed

(b
) o

pt
im

iz
ed

(c
) d

et
ai

ls

Spherical joints: S1-S4
Actuators:  A1-A3
Hinge joints:  H1-H2 (univ joint)
Opt. variables: S1-S4 pos.
EE DOF 1: H1 (roll)
EE DOF 2: H2 (pitch)
EE DOF 3: A3 (yaw)S1

S2 S4

S3

A1
A2

H1
H2

A3

Fig. 11. Three-motor neck, details.

optimization successfully increases the feasible range of the
mechanism to match the specified target.

F. Performance

All optimizations were performed on a machine with an
Intel Core i7-7700 processor (4 cores, 4.2 GHz) and 32 GB of
RAM. Our pipeline was implemented in C++, using Eigen for
linear algebra and a custom symbolic differentiation library
to compute derivatives. Tab. I reports the key performance
statistics for all the examples. Straightforward parallelism at
the IK / adversarial sample level was used to accelerate the
computations, but there are other unexplored opportunities for
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TABLE I
PERFORMANCE STATISTICS

|s| |p| #targets #opt. iter. Opt. time

Five-bar 35 3 9 8 15min
Finger 49 12 9 21 1h 05min
Neck 2 DOF 42 6 9 25 55min
Jansen leg 63 12 16 38 13h
Neck 3 DOF 56 6 27 52 18h 30min

|s|: number of FK variables; |p|: number of design parameters, with all
optimizer constraints taken into account; #targets: number of IK targets,
and thus of IK and adversarial samples; # opt. iter., opt. time: number of
optimization iterations and approximate optimization time

parallelization at the PSO particle level. We believe that the
performance could also be significantly improved by an early
detection of “bad” designs, for which sample computations
tend to be numerically more challenging.

VII. CONCLUSION

We first summarize key contributions of our method.
• Problem formulation. Using an end-effector parameter-

ization allows for an explicit formulation of the desired
mechanism range. Furthermore, the requirement to avoid
both forward kinematic and backward kinematic singu-
larities allows for all trajectories within the range to be
feasible on optimized designs.

• Scalability. Only a sparse set of configurations is used to
summarize the assembly behavior in its operation range,
as opposed to previous methods where target trajectories
were densely sampled. In parameter space, the use of PSO
supplants grid search approaches, impractical for large
numbers of design variables.

• Robustness. The combination of IK and adversarial sam-
ples allows for dealing with both types of singularities,
regardless of the partial reliability of IK. The use of a
modified PSO scheme lets us consistently find relevant
solutions to the optimization problem, despite the im-
practicality of gradient computation.

• Generality. Our method improves over previous work
through the handling of multi-motor designs. Further-
more, it is agnostic to the type of joints in the mechanism
or to the definition of the end-effector variables b, as long
as the associated constraint functions are provided. Our
3-DOF neck example is an indication that the method
will also generalize well to mechanisms with higher DOF
counts.

Our approach, however, has several limitations, providing
interesting avenues for future work.

Although our adversarial sampling strategy proved suc-
cessful for a reasonably low number of samples on all our
examples, we cannot give a mathematical guarantee that all
singularities are detected this way. Deriving bounds on the
detection accuracy vs. the number of samples would thus be
beneficial.

While our optimization method can be expected to gener-
alize well to higher number of DOFs, an exciting direction
for future work is the visualization of the performance of a

mechanism for higher-DOF (> 3) results. In particular, the
non-bijectivity of the mapping from motor space to end effec-
tor space can be expected to become increasingly prominent
in higher dimensions.

In our demonstrations, generating the geometry of the
optimized components so as to avoid collisions was trivial
on planar examples, and relatively simple on spatial exam-
ples. Nonetheless, resolving collisions will likely become a
bottleneck for complex spatial mechanisms. We believe our
algorithm could be augmented seamlessly with a collision
avoidance objective, analogous to the singularity proximity
metric. The main challenge would be to make this objective
fast to evaluate while smooth and non-zero even at a significant
distance from the closest collision event.

Another interesting research direction would be a systematic
analysis of the effects of errors in fabrication, motor control
and joint backlash, as done in [38] on a parallel manipulator.
As we have seen, avoiding singular configurations avoids the
worst-case sensitivity to a change in the kinematic parameters;
a similar argument could be made for changes in design
parameters. However, the explicit optimization of an arbitrary
assembly design to increase its robustness to errors in the
absence of singular configurations has yet to be investigated.

Finally, continuous design optimization is only one half of
the more general mechanism synthesis problem. Being able to
automatically select and connect components so as to generate
an initial linkage design, given a higher-level motion input,
would be an exciting area of future research.

APPENDIX

A. Design of the culled and attractive versions of fsing

The culled singularity proximity metric f csing is given by
f csing(s) = fsing(s)ϕ (fsing(s)), with ϕ a C2 step function:

ϕ(x) =

 0 for x < α−
6X5 − 15X4 + 10X3 for α− 6 x < α+

1 for x > α+

(7)

where X = x−α−
α+−α−

. The user-set threshold α− is the highest
accepted value of fsing, fixed in our results between 1.2 and
4 times fsing(s0), depending on the example, and with s0
the initial state. α+ is fixed to 10

7 α−, but its value has little
incidence.

For adversarial sampling, the attractive version fasing of fsing
is defined as fasing(s) = ψ(fsing(s)), with

ψ(x) =

{
ax3 + bx2 + cx+ d for x < α+

x for x > α+
(8)

The coefficients a = − 1/3(α+ − αt)
2, b = α+/(α+ − αt)

2, c =
1 − α2

+/(α+ − αt)
2, and d = α3

+/3(α+ − αt)
2 are computed so

that ψ is C2-continuous and has a local minimum at the target
value αt, defined by αt =

α−+α+

2 .

B. Second regularizer in adversarial sampling

We detail here the expression for the regularizer R2 in
adversarial sampling. Assuming a target range given as a
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cartesian product
[
bmin
0 ,bmax

0

]
×
[
bmin
1 ,bmax

1

]
× ... (with bi

the components of b), we define

R2(s) =
∑
i

β−
(
bi(s),b

min
i

)
+ β+

(
bi(s),b

max
i

)
(9)

where the inferior and superior smooth barrier functions
β−, β+ are defined as{

β−(x, xmin) =M exp
(
log
(
m
M

)
x−xmin
ε

)
β+(x, xmax) =M exp

(
log
(
m
M

)
xmax−x
ε

) (10)

The parameters M,m, ε are such that β−, β+ take the value
m at x = xmin + ε (resp. xmax − ε) and M at x = xmin
(resp. xmax); in practice, we use m = 0.1, M = 5 and ε =
0.03

(
bmax
i − bmin

i

)
.
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