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Abstract— Animated characters often move in non-physical
ways and have proportions that are far from a typical walking
robot. This provides an ideal platform for innovation in both
mechanical design and stylized motion control. In this paper, we
bring Olaf to life in the physical world, relying on reinforcement
learning guided by animation references for control. To create
the illusion of Olaf’s feet moving along his body, we hide
two asymmetric legs under a soft foam skirt. To fit actuators
inside the character, we use spherical and planar linkages in
the arms, mouth, and eyes. Because the walk cycle results in
harsh contact sounds, we introduce additional rewards that
noticeably reduce impact noise. The large head, driven by
small actuators in the character’s slim neck, creates a risk of
overheating, amplified by the costume. To keep actuators from
overheating, we feed temperature values as additional inputs to
policies, introducing new rewards to keep them within bounds.
We validate the efficacy of our modeling in simulation and on
hardware, demonstrating an unmatched level of believability
for a costumed robotic character.

I. INTRODUCTION

The field of legged robotics has traditionally been driven
by goals centered on functionality, robustness, and effi-
ciency [1]. This focus has enabled impressive dynamic
capabilities, from hiking up mountains [2] to traversing chal-
lenging terrain [3], [4]. However, as robots enter domains that
involve direct human participation, such as entertainment [5],
[6], [7], [8] and companionship [9], functional performance
alone is no longer sufficient. In these settings, believability
and character fidelity become central, shifting the engineer-
ing objective and imposing strict aesthetic constraints.

In this paper, we focus on bringing Olaf, an animated char-
acter, into the physical world (see Fig. 1). Unlike most robots,
Olaf has a large, heavy head, small snowball feet, as well as a
non-physical motion style. These characteristics impose strict
constraints on both mechanical design and motion control,
including the need to hide all mechanical components within
tight spatial constraints. At the same time, the illusion of
believability is fragile: even small inconsistencies, such as
rough foot impacts or jitter, can break the character’s lifelike
appearance. This sensitivity makes it particularly challenging
to develop a convincing robotic representation of an animated
character.

We address the mechanical challenges with a compact
design that is fully hidden beneath a costume. To achieve
the required mobility of the leg mechanism within the limited
volume, we adopt an asymmetric leg design and conceal it
under a soft foam skirt. This skirt also shapes the costume
and creates the illusion of Olaf’s feet moving freely beneath
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Fig. 1: Olaf Robot.

his body. To preserve Olaf’s visual appearance, we rely on
small actuators and remote actuation through spherical and
planar linkages. These are used throughout the character in
the arms, mouth, and eyes to achieve an unmatched level of
believability for a costumed robotic character.

The control of Olaf is based on Reinforcement Learning
(RL), with imitation rewards centered around animation ref-
erences. The combination of a large head and small actuators
placed inside the slim costumed neck introduces a risk of
overheating. To address this, we propose a policy that takes
actuator temperatures as additional inputs. We incorporate a
thermal actuator model into our simulation and formulate a
reward that encourages thermal safety. Because harsh robotic
footsteps break the character’s believability, we further in-
troduce a reward that noticeably reduces impact noise. Our
reward formulation also includes joint limit constraints and a
penalty for collisions between the feet. We complement the
RL policies with classical control and system identification
to actuate the mechanical linkages in the arms, eyes, and
mouth.

Succinctly, our main contributions are:
• Mechatronic design: a compact, scale-accurate design

of Olaf, featuring a novel asymmetric six-degrees-of-
freedom (6-DoF) leg mechanism and the integration of
remotely actuated spherical, planar, and spatial linkages
to achieve high-fidelity, expressive motion in the arms,
mouth, and eyes.

• Thermal-aware policy: a control policy that incor-
porates actuator temperature as an input and learns
to prevent overheating through our proposed reward
formulation.



• Impact reduction reward: a reward that substantially
reduces footstep noise, helping preserve the character’s
believability.

II. RELATED WORK

Most legged robots take inspiration from Nature through
their anthropomorphic [10], [11], [12], [13], [14] or zoomor-
phic [15], [16], [17] morphologies, and their design and
control are predominantly guided by functional require-
ments [18], [15].

In this work, we instead focus on creating a robotic
character, based on an artistic reference — bringing a well-
known animated character into the physical world. The robot
should freely walk and move like the animated character,
with functional aspects such as energy efficiency and power
density becoming secondary considerations.

Related work [7] created a new robotic character and
presented a pipeline for animating and controlling it. Our
work differs in that we are bringing an existing animated
character to life, which requires navigating tradeoffs of
functionality and believability within a tight design envelope.
While the Cosmo robot [6] represents an existing character
from a movie, we focus on a non-robotic, costumed character
with less favorable proportions.

Bipedal and quadrupedal robots often have actuators at
the joints [10], [16], or implement remote actuation through
linkages [19], [17], [20]. Because the two legs of Olaf are
hidden in its small main body, we depart from a traditional
symmetric design, to maximize the workspace. We also use
linkages to place actuators where there is space [21], [22],
including spherical linkages at the shoulders.

For control, we rely on policies trained using RL that
are conditioned on high-level control inputs. During runtime,
these high-level control inputs are computed by a real-time
character animation engine [7]. RL has led to tremendous
progress in robust locomotion [23], [24], [25], [26], imitation
learning [27], [28], [29], [30], and navigation of complex
environments [31], [32]. More recently, RL has increas-
ingly been used to account for additional real-world effects,
ranging from energy losses in actuators [33] to impact-
minimizing strategies that allow quieter locomotion [34],
[35]. We build on these ideas to reduce Olaf’s stepping sound
while preserving its characteristic gait, and further introduce
thermal-aware policies with applications beyond our specific
use case.

III. WORKFLOW

Our goal is to realize a robotic representation of Olaf, an
animated character with characteristic, non-physical move-
ments, and proportions atypical for robots. To meet these
strict functional and creative requirements, the initial me-
chanical design began with the main backbone with actuated
legs and neck (shown in green in Fig. 2). For animation
authoring, we maintained an animation rig and animation ref-
erences with the same degrees of freedom. To rapidly explore
where to best place actuated degrees of freedom within the
envelope of the character, we iteratively trained policies for
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Fig. 2: Mechatronic Design and RL-based Control. We
separate the articulated backbone from the show functions.
The backbone is controlled via policies conditioned on the
high-level control input gt and trained using a combination of
imitation, overheating, and impact rewards. During training,
the control inputs are randomized, whereas at runtime, the
Animation Engine generates control inputs from puppeteer-
ing commands.

standing and walking, evaluating the expressiveness of the
character skeleton in simulation. In a second phase, we added
mechanical show functions—elements that drive expressive
behavior such as the arms, mouth, eyes, and eyebrows (in
blue) without affecting system dynamics. See Sec. IV for a
description of the mechatronic design.

Control is divided into two layers: the articulation back-
bone, controlled by RL policies (Sec. V), and the show
functions, using classical control methods (Sec. VI). The
RL simulation model is derived from the mechanical design
and augmented with actuator temperature dynamics. Policies
are trained using a reward function that augments imitation
terms for accurate tracking of kinematic references with
penalties enforcing physical limits, such as joint ranges
and actuator temperatures. We train separate walking and
standing policies, each conditioned on control inputs gt for
animation tracking and interactive control.

At runtime (Sec. VII-C), Olaf is puppeteered via a remote
interface. Following the design in [7], the Animation Engine
processes these commands to switch policies, trigger anima-
tions and audio, and provide interactive joystick control.

IV. MECHATRONIC DESIGN

The presented robotic representation of Olaf stands
88.7 cm tall without hair and weighs 14.9 kg. It has 25
degrees of freedom in total; 6 per leg, 2 per shoulder, 3
in the neck, 1 in the jaw, 1 in the eyebrow, and 4 in the
mechanical eyes. See Fig. 3 for an annotated cutaway view
of the robot. We use Unitree and Dynamixel actuators as
indicated in the figure, and on-board compute is provided



Fig. 3: Mechatronic Design. Shells and skirt have been
cut away to show the interior. Note that the costume is not
shown.

by 3 computers. The form factor of the character presents
several design challenges, discussed next.

Compact Design Envelope: For the animated character,
the two feet are free-floating snowballs beneath the body
without visible legs. To emulate this, the robot design largely
conceals the legs within the lower body, constraining the
motion envelope of each leg to be within this bounding
volume. To this end, we implement a novel 6-DoF leg design
where one leg is inverted, such that the left leg has a rear-
facing hip roll actuator and a forward knee, and the right
leg has a forward hip roll actuator and a rear-facing knee
(see Fig. 3). This configuration mitigates collisions between
the two hip roll actuators and between the knees as the legs
rotate in yaw. Furthermore, as the two legs are identical,
instead of being mirrored, the part count is reduced.

The robot requires a 2-DoF shoulder; however, the limited
space prevents placing the actuators at the joint. Instead,
we place actuators within the torso and drive the shoulder
through a spherical 5-bar linkage. See Fig. 3, and also the
supplemental video. For the mouth, a single actuator drives
both the upper and lower jaw. The lower jaw is actuated
directly, and the upper jaw is coupled to this through a 4-bar
linkage. The mechanical eyes have independent direct-drive
eye yaw, along with eye pitch and eyelid, which are both
remotely actuated through 4-bar linkages. All other joints
are direct-drive.

Fig. 4: Path Frame. Visualization of the path-frame concept
from [7] and the robot’s center of mass.

Soft Shells: To conceal the legs within the lower snow-
ball, while not overly restricting the range of motion, the
lower snowball is designed as a flexible “skirt” made from
polyurethane (PU) foam. This offers sufficient structure to
maintain its shape while allowing deflection to accommodate
larger leg movement, such as during recovery steps. The foot
snowballs are constructed similarly. The flexible foam also
absorbs impacts, reducing the severity of falls.

Costuming and Appendages: The costume is made
of 4-way stretch fabric that can stretch both horizontally
and vertically, allowing it to conform to the robot and its
movements. A semi-rigid “boning” structure ensures that
the costume maintains its shape over the cavity below the
mouth. Around the eyes and the mouth, snap fasteners and
magnets hold the costume in place. The arms, nose, buttons,
eyebrows, and hair are held in place with magnets. This
enables them to affix atop the costume (nose, buttons), and
to break away in case of a fall or impact to mitigate damage.

V. REINFORCEMENT LEARNING

Building on previous work in character control [7], we use
a separate walking and standing policy, each formulated as
an independent RL problem tailored to its specific motion
regime. At each time step, the agent produces an action
at according to a policy π(at|st, gt), conditioned on the
observable state st and control input gt. The environment
then returns the next state st+1 and a scalar reward rt =
r(st,at, st+1, gt), which encourages accurate imitation of
artist-defined kinematic motions while maintaining dynamic
and robust balance.

To achieve invariance to the robot’s global pose and enable
smooth transitions between policies, we use the path frame
concept introduced in [7]. The path frame state at time t is

pPF
t :=

(
xPF
t , yPF

t , ψPF
t

)
, (1)

where (xPF
t , yPF

t ) denote the horizontal position and ψPF
t

the yaw orientation.
During walking, the path frame advances by integrating

the commanded path velocity vPF
t (see Fig. 4). During

standing, the frame slowly converges toward the midpoint
between the feet. Quantities expressed relative to this frame
are denoted with the superscript P . To prevent excessive de-
viation from the robot’s motion, the path frame is constrained
to remain within a bounded distance of the torso.

A. Animation Reference

We start with animation references for walking and stand-
ing, created by artists using animation tools. These are



conditioned on a control input gt, defined in (2). Notably, we
use a gait generation tool [36] to design stylized walk cycles
with heel-toe motion, capturing Olaf’s characteristic gait. We
demonstrate the importance of this feature in Sec. VIII-A.
Based on these references, the full kinematic target state xt

is obtained through a generator function f(·) that maps the
path-frame state pPF

t and the policy-dependent control input
gt to the kinematic target using interpolation and path-frame
alignment. This mapping is expressed as:

xt := (pP
t ,θ

P
t ,v

P
t ,ω

P
t , qt, q̇t, c

L
t , c

R
t ),

gt :=

{
(q̂neck

t , θ̂t, p̂z,t) standing,
(q̂neck

t , v̂PF
t ) walking.

xt =

{
f(pPF

t , gt) standing,
f(pPF

t , gt, ϕt) walking.

(2)

where pt and θt are the torso position and orientation (unit
quaternion), vt and ωt are the linear and angular torso
velocities, qt and q̇t are the joint positions and velocities,
and cLt and cRt are the left and right foot contact indicators.
Hats ·̂ denote target quantities. For walking, f(·) additionally
includes the gait phase variable ϕt. To ensure robustness and
broad applicability, the control input gt is randomized across
its full range during training.

B. Policy

Actions at are position targets for Proportional-Derivative
(PD) controllers at the joints. The robot’s proprioceptive state
is

st := (pP
t ,θ

P
t ,v

R
t ,ω

R
t , qt, q̇t,at−1,at−2,Tt, ϕt), (3)

where pP
t and θP

t form the root pose relative to the path
frame, and vR

t and ωR
t denote the torso velocities expressed

in the root frame. We also append the joint positions qt,
joint velocities q̇t, the actions of the two previous time steps,
at−1 and at−2, and the temperature Tt of the actuators. For
walking, the policy is additionally conditioned on the gait
phase variable ϕt.

C. Reward Formulation

The reward includes four components: imitation, regular-
ization, limits, and impact reduction,

rt = rimitation
t + rregularization

t + rlimits
t + rimpact reduction

t . (4)

The imitation and regularization terms follow standard
practice [27], [7] and encourage accurate tracking of the
reference motion with action penalties. The limit terms
capture constraints arising from Olaf’s compact mechanical
design. The impact reduction term reduces foot impacts and
thereby significantly lowers footstep noise.

A detailed breakdown of the reward terms is provided
in Tab. I with reward weights reported in Tab. III, where
hats ·̂ denote target quantities derived from xt. The time
index t is omitted for readability. In the next section, we
motivate the design choices behind our reward functions in
more detail.

TABLE I: Reward Terms. Hats ·̂ denote reference quantities.
Control-barrier rewards enforce thermal and joint limits,
while penalizing large foot velocity rates reduces impact
noise. ⊟ is the SO(3) log-map orientation difference and
1[·] is the indicator function.

Name Reward Term

Imitation

Torso position xy exp
(
−200.0 · ∥px,y − p̂x,y∥22

)
Torso orientation exp

(
−20.0 · ∥θ ⊟ θ̂∥22

)
Linear vel. xy exp

(
−8.0 · ∥vx,y − v̂x,y∥22

)
Linear vel. z exp

(
−8.0 · ∥vz − v̂z∥22

)
Angular vel. xy exp

(
−2.0 · ∥ωx,y − ω̂x,y∥22

)
Angular vel. z exp

(
−2.0 · ∥ωz − ω̂z∥22

)
Leg joint pos. −∥ql − q̂l∥22
Neck joint pos. −∥qn − q̂n∥22
Leg joint vel. −∥q̇l − ˆ̇ql∥22
Neck joint vel. −∥q̇n − ˆ̇qn∥22
Contact

∑
i∈{L,R} 1[ci = ĉi]

Survival 1.0

Regularization

Joint torques −∥τ∥22
Joint acc. −∥q̈∥22
Leg action rate −∥al − at−1,l∥22
Neck action rate −∥an − at−1,n∥22
Leg action acc. −∥al − 2at−1,l + at−2,l∥22
Neck action acc. −∥an − 2at−1,n + at−2,n∥22

Limits

Neck temperature −∥min(−Ṫn + γT (Tmax − Tn),0)∥1
Joint limits (lower) −∥min (q̇ + γq(q − (qmin + qm)),0)∥1
Joint limits (upper) −∥min (−q̇ + γq((qmax − qm)− q),0)∥1
Foot–Foot collision −1[contact(L,R)]

Impact Reduction

Sound suppression −(
∑

i∈{L,R} min(∆v2i,z , ∆v2max))

The reward rimitation
t (Tab. I, Imitation) incentivizes ac-

curate imitation of the kinematic reference motion. Joint
weights differ between the neck and legs to reflect their
substantially different reflected inertias.

We apply early termination when the head, torso, upper
legs, or arms are in contact with the ground. We additionally
add regularization terms rregularization

t (Tab. I, Regularization)
to penalize excessive joint torques and encourage smooth
actions, thereby reducing vibrations and unnecessary effort.

The reward rlimits
t (Tab. I, Limits) penalizes violations of

critical physical constraints.
We incorporate a temperature reward term as detailed

in Sec. V-D, and implement joint limit penalties, described
in Sec. V-E. Finally, to prevent self-collisions between Olaf’s
two snowball feet, we include a penalty for foot–foot contact.

An impact-reduction term complements the reward func-
tion and penalizes changes in velocity along the grav-
ity direction between simulation steps, thereby producing
smoother foot motions and reducing impact noise. Because
the physics engine can generate large velocity changes during
contact resolution, which may result in a large reward
term and destabilize critic learning, we saturate the impact-



reduction reward term in the reward computation.

D. Thermal Modeling

Olaf’s slim, costume-covered neck requires small actuators
to support a heavy head, which caused frequent overheating
in early experiments. We address this by requiring the ac-
tuator temperature T to stay below a maximum temperature
Tmax, as formalized through the inequality constraint in (5a).
We transform this constraint, which depends on the slowly
varying temperature state, into a Control Barrier Function
(CBF, [37]) condition (5c). The CBF condition shapes the de-
sired behavior locally in time by imposing constraints on the
time derivative. Intuitively, it ensures that as the temperature
approaches or exceeds the maximum, the system responds
by maintaining Ṫ ≤ 0, thereby preventing overheating

hT (T ) = Tmax − T ≥ 0, (5a)

ḣT (T ) + γThT (T ) ≥ 0, γT > 0, (5b)

−Ṫ + γT (Tmax − T ) ≥ 0, γT > 0. (5c)

The set of CBF constraints per actuator is translated into a
penalty by computing the total violation, as defined in Tab. I.
To implement the thermal CBF in simulation, we require a
model of the actuator thermal dynamics. These dynamics are
dominated by electrical Joule heating P , which scales with
τ2 since torque τ ∝ I and P ∝ I2. We therefore model the
temperature as a first-order system driven by squared torque:

Ṫ = −α(T − Tambient) + βτ2, (6)

neglecting mechanical heat generation. The parameters α, β,
and Tambient are fitted from data, as detailed in Sec. VII-A.

E. Joint Limits

To prevent joint-limit violations, we use a similar reward
function based on CBF conditions (8), which enforces a
margin qm from each joint’s physical limits qmin and qmax.
For each joint, we define

hq(q) =

{
q − (qmin + qm) ≥ 0, lower limit,
(qmax − qm)− q ≥ 0, upper limit,

(7)

with the corresponding per-joint CBF constraints

q̇ + γq (q − (qmin + qm)) ≥ 0, lower limit,
−q̇ + γq ((qmax − qm)− q) ≥ 0, upper limit,

(8)

where γq > 0. We choose a margin of qm = 0.1 rad and set
γq = 20.

VI. SHOW FUNCTIONS

Olaf’s show functions — the eyes and eyebrows, the jaw
mechanism, and the arms — have low inertia and therefore
minimally affect system dynamics. For this reason, they are
separated from the main articulated backbone and controlled
using classical methods.

To control Olaf’s show functions, we must map their
functional space, which is the space in which motions are
animated and composited, to actuator space. This mapping is
derived using a forward-kinematics solver [38] by uniformly

TABLE II: Thermal Model and Reward Parameters. Neck
actuator thermal model coefficients and reward parameters,
specifying temperature dynamics, allowed limits, and the
control-barrier coefficient.

Thermal Model Reward Function

α 0.038 Tmax 80 ◦C
β 0.377 Tclip [70 ◦C, 85 ◦C]
Tambient 43.94 γT 0.312

sampling the functional region of interest and fitting a
polynomial.

For Olaf’s eyes, the functional space includes left and
right eye yaw, coupled eye pitch, and eyelid closure. For
the given eye mechanism, a first-order polynomial per ac-
tuator is sufficiently accurate. Olaf’s left and right arms are
implemented as spherical 5-bar linkages, each driven by two
actuators. We parameterize their functional coordinates using
two serial revolute angles: arm swing followed by arm pitch.
Arm swing maps directly to the first actuator, whereas arm
pitch is coupled through both actuators. The second actuator
position is obtained through a cubic polynomial fit. After
applying the actuator mapping, all eye and arm actuators are
controlled using a PD loop.

For the jaw, the costume introduces significant external
forces through fabric tension when the mouth is closed and
wrinkling when it opens, which degrade tracking perfor-
mance. To compensate for these effects, we add a feedfor-
ward term τ jaw

ff (qjaw) to the PD controller. We estimate this
feedforward term by measuring the torque required to hold a
set of uniformly sampled jaw angles qjaw across the full range
of motion. Using least squares, we fit a first-order polynomial
with an additional cosine term that captures the non-linearity
observed in the data:

τ jaw
ff (qjaw) = c0 + c1q

jaw + ccos cos(q
jaw), (9)

where c0, c1, and ccos are the fitted model parameters.

VII. IMPLEMENTATION DETAILS

A. Thermal Model and Reward

We fit the parameters of the thermal model (α, β, Tambient)
in (6) using a least-squares regression applied to an explicit
Euler discretization of the thermal dynamics, sampled at
50Hz to match the policy rate. The regression is performed
on 20min of recorded data. A quantitative evaluation of the
resulting model is provided in Sec. VIII-B.

To limit the temperature range the policy needs to
be exposed to during training, we clip the temperatures
used in policy observations and rewards to the interval
[Tclip,min, Tclip,max]. To ensure that the constraint in (5c) re-
mains feasible at the upper clipping boundary, we choose
γT such that the constraint is satisfied under the smallest
possible heat generation, i.e., when τ2 = 0. All parameters
used in the thermal reward model are summarized in Tab. II.



TABLE III: Reward Weights. Weights used for the standing
and walking policies. Two values indicate Standing / Walk-
ing; a single value applies to both.

Reward
Name

Standing
/Walking

Reward
Name

Standing
/Walking

Torso position xy 1.0/4.0 Neck action rate 5.0/10.0
Torso orientation 2.0/1.5 Leg action rate 2.0/5.0
Linear vel. xy 1.5/2.5 Leg action acc. 0.5/1.0
Linear vel. z 1.0 Neck action acc. 15.0/10.0
Angular vel. z 1.5 Neck temperature 2.0
Leg joint pos. 15.0 Joint limits 0.5/0.2
Neck joint pos. 40.0 Foot–Foot collision 10.0
Leg joint vel. 1.0 · 10−3 Impact reduction 2.5 · 10−3

Neck joint vel. 0.5 Joint torques 1.0 · 10−3

Contact 2.0/1.0 Joint acc. 2.5 · 10−6

Survival 20.0

B. Training

We train the policies using Proximal Policy Optimiza-
tion (PPO) [39]. The critic receives privileged information,
including noiseless measurements, friction parameters, and
terrain height samples. We add noise to the actor observations
and apply randomized disturbance forces during training.
Both actor and critic are implemented as three-layer MLPs
with 512 units per layer. All reward weights are listed in
Tab. III.

Training is performed in Isaac Sim [40], running 8192
environments in parallel on a single RTX 4090 GPU. Policies
are trained for 100k iterations (approximately 2 d).

C. Runtime

After training, the policy networks are frozen and deployed
to the robot’s on-board computer. The proprioceptive state
st is estimated using a state estimator that fuses IMU and
actuator measurements [41]. The policy runs at 50Hz, and
its output is upsampled to the 600Hz actuator rate using a
first-order hold (i.e., linear interpolation between successive
actions). Finally, the upsampled actions are passed through
a low-pass filter with a cut-off of 37.5Hz to ensure smooth
motor commands.

Using the architecture from [7], puppeteering commands
are processed by an Animation Engine, which blends trig-
gered content and maps real-time puppeteering inputs to
policy control input gt, show function signals, and audio
triggers through a three-stage process:

• Background animations: plays looped whole-body an-
imations to introduce subtle idle behaviors such as eye
saccades and arm adjustments.

• Triggered animations: layers short animated clips (e.g.,
gestures or spoken lines) on top of the background.

• Joystick-driven control: adjusts the output pose based
on teleoperation inputs. During standing, it controls
gaze and body posture; during walking, it controls gaze
and path velocity.

VIII. RESULTS

We evaluate Olaf’s mechatronic design in the real world,
with its performance demonstrated directly in the visual
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Fig. 5: Thermal Model. Validation of the thermal model
in (6), comparing predicted actuator temperatures T with
measured values over a 10min rollout. Temperatures are
quantized as reported by the actuator.

results. The asymmetrical leg design enables faithful imi-
tation of Olaf’s characteristic animations while adhering to
all design requirements. The magnetic arms and nose enable
in-character gags, as highlighted in the supporting video.

In the following, we analyze the robot’s control mecha-
nisms in detail.

A. Tracking Performance

We compare the kinematic reference to the executed
motion on the robot, as best appreciated in the supplementary
video. To quantify this, we evaluate the mean absolute joint-
tracking error over the full trajectory and all joints of our
walking and standing policy across the full range of control
inputs gt for 5min each. For the standing policy, we achieve
an error of 3.87◦ ± 2.40◦, and for the walking policy,
4.02◦ ± 2.01◦.

We additionally analyze the effect of Olaf’s characteristic
heel–toe walk by training a policy without it to assess its
effect on the visual appearance of his gait. As shown in
the supplementary video, the resulting motion appears more
robotic.

B. Thermal Modeling

As shown in Fig. 5, we evaluate the thermal model fitted
with the parameters in Tab. II by simulating the temperature
evolution over a 10min trajectory that was not included in
the regression dataset. The simulation is initialized at the
measured temperature at time 0. Across the full trajectory,
the model achieves a mean absolute error of 1.87 ◦C, demon-
strating good predictive accuracy.

The timescale of the thermal model is far slower than
that of the balancing dynamics, making it a challenging
RL objective. To evaluate the effectiveness of the proposed
thermal reward, we compare the temperature evolution of
the neck-pitch actuator, identified in our experiments as the
actuator most prone to overheating, and the mean absolute
joint-tracking error for policies trained with and without the
thermal reward. The evaluation is performed on a trajectory
where Olaf looks upward and follows a predefined motion,
slowly turning his head left and right.

As shown in Fig. 6, the baseline policy without the ther-
mal reward causes the actuator temperature to rise rapidly,
reaching 100 ◦C within 40 s, at which point the experiment
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Fig. 6: Thermal Reward Evaluation. Neck-pitch tempera-
ture, mean joint-tracking error, and squared neck-pitch torque
for policies trained with and without the thermal reward.
The thermal reward slows temperature rise while maintaining
tracking at low temperatures and slightly relaxes tracking
near the temperature limit to prevent overheating.

was stopped to prevent actuator damage. The policy with
the thermal reward exhibits only a slightly larger track-
ing error, while the actuator temperature rises significantly
slower. This is explained by the squared torque, which shows
that the policy reduces torque usage well before reaching
the temperature limit, while maintaining nearly the same
tracking accuracy. As the temperature approaches the 80 ◦C
threshold, the squared torque increases as the policy adjusts
the head toward a more horizontal orientation. This requires
more torque initially, but lowers torque demand over time.
The supplementary video further illustrates this behavior,
showing how the policy gradually relaxes tracking near the
temperature limit.

C. Foot Impact

We evaluate the effect of the foot impact reduction re-
ward for sound suppression by comparing its addition to
the baseline on hardware. Over a 5min run, this reward
reduces the mean sound level by 13.5 dB. This reduction is
also clearly noticeable in the supplementary video. Despite
the reward, tracking performance and resemblance to the
kinematic reference remain largely preserved.

Fig. 7 shows the vertical foot velocity and position profiles
for the reference, as well as policies trained with and without
the foot impact reduction reward during a swing phase.
The reward acts as a regularizer: the overall trajectory is
preserved, but small nuances of the reference, such as the
mid-swing dip of the foot, are smoothed out. The policy
trained without the impact reduction reward follows the
motion profile slightly better but still fails to capture these
fine details, while exhibiting higher peak velocities at foot
impact. This demonstrates that the reward effectively reduces
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Fig. 7: Foot Impact Reduction. Comparison of z-foot
velocity and position for the reference and policies trained
with and without the foot impact reduction reward.

impact forces while maintaining the overall motion profile.

IX. CONCLUSION

This work has presented Olaf, a freely walking robot that
accurately imitates the animated character in terms of style
and appearance. We addressed challenging design require-
ments by proposing an asymmetric 6-DoF leg mechanism
hidden beneath a foam skirt. We tackled control requirements
by using reinforcement learning and impact-reducing rewards
to significantly reduce stepping sound. Furthermore, we
incorporated control barrier function constraints to mitigate
actuator overheating with a thermal model and to prevent
joint-limit violations.

Although the results demonstrate their effectiveness for
Olaf specifically, the proposed solutions can be applied be-
yond our specific character. Open research directions remain
to be addressed. First, a higher fidelity thermal model could
be used to capture the contribution of mechanical effects like
friction, or the gradual heating of actuator enclosures during
extended operation. Second, interaction forces between the
costume and the legs were addressed solely through domain-
randomized disturbance forces. Explicitly modeling these
effects could reduce reliance on randomization and provide
more targeted training.

Olaf is the first of its kind, setting new standards for
believability and design of a non-robotic character. We hope
this work inspires the field to push the boundaries beyond
standard bipedal and quadrupedal robots.
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