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Abstract. In this paper, we propose a system to determine the pres-
sure gradient at rest in the aorta. We developed a technique to efficiently
initialize a regular simulation grid from a patient-specific aortic triangu-
lated model. On this grid we employ the lattice Boltzmann method to
resolve the characteristic fluid flow through the vessel. The inflow rates,
as measured physiologically, are imposed providing accurate pulsatile
flow. The simulation required a resolution of at least 20 microns to en-
sure a convergence of the pressure calculation. HARVEY, a large-scale
parallel code, was run on the IBM Blue Gene/Q supercomputer to model
the flow at this high resolution. We analyze and evaluate the strengths
and weaknesses of our system.

Keywords: computational fluid dynamics, coarctation of the aorta, lat-
tice boltzmann, parallel computing.

1 Introduction

Coarctation of the aorta (CoA) can pose a significant problem as this narrow-
ing of the aorta can inhibit blood flow through the artery. CoA accounts for
8%-11% of congenital heart defects, which makes it affect tens of thousands of
patients annually in the Western world [1]. Hence, there is a need to efficiently
diagnose the degree of arterial narrowing so that preventative action such as
balloon angioplasty or stent implantation can be taken [2]. These methods serve
to alleviate the pressure gradient through the coarctation in order to reduce the
burden on the heart.

An obstruction is characterized as significant when the peak to peak sys-
tolic pressure gradient across the coarcted vessel is measured at greater than 20
mmHg. This pressure gradient is not only determined by the size of the narrow-
ing but also factors such as the flowrate of the fluid and the size, number, and
placement of collateral vessels [2]. The physiological state of the patient can also
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contribute to an increase in the pressure gradient if, e.g., the patient is in an
exercised state due to the associated elevation in heart rate. When the patient is
at rest, clinicians can easily measure the pressure gradient; however, this mea-
surement is difficult to obtain under exercise conditions. This difficulty causes
simulation to play a key role in determining the pressure gradient non-invasively.

In this paper, we discuss a method for using data from medical imaging along-
side a lattice Boltzmann fluid model to simulate blood flow and pressure in a
model built from patient data. We will present the methods to impose a regular
grid and model the fluid flow using parameters provided from patient data. We
use the provided inflow waveform to produce realistic pulsatile flow that upholds
the measured flow distribution via velocity imposed boundary conditions at the
inlets and outlets.

2 Data

The data used in this paper was provided by the STACOM CFD Challenge for
the simulation of hemodynamics in a patient-specific aorta coarctation model.
The geometry of the vessels were obtained through gadolinium-enhances MR
angiography (MRA) with a 1.5-T GE Signa scanner. A segmented STL file was
provided defining the ascending aorta, arch, descending aorta, and upper branch
vessels. Flow rates were measured by PC-MRI sequence encoding and provided
for the course of a cardiac cycle as well as the percent of flow seen in each branch
of the model [1].

3 Computational Fluid Dynamics (CFD) Framework

In this work, we use the lattice Boltzmann method (LBM) as the basis of our
simulation [3]. The LBM has proven to be a strong alternative to simulations de-
rived from the Navier-Stokes equation of continuum mechanics. In recent years,
its ease of handling complex geometries and parallelization has made it increas-
ingly popular. Unlike conventional CFD methods based on the discretization
of macroscopic continuum equations, the LBM constructs a simplified kinetic
model incorporating the essential physics and preserving macroscopically aver-
aged quantities like mass and momentum [4].

In this model, the volume of a 3-dimensional mesh is filled with a regular
array of lattice points on which a minimal form of the classical Boltzmann is
simultaneously solved for a set of fictitious particles [3]. These particles represent
the collective motion of a group of physical particles and the dynamics are such
that they ensure hydrodynamic behavior in the continuum limit.

3.1 Algorithm

The fundamental quantity is the probability density function defining the likeli-
hood of finding particles at a specific location, at a specific time, traveling along
a specific velocity path. In this work, we use the 19-speed velocity model, D3Q19,
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in which the discrete velocities, ci, connect lattice points to the first and second
topological neighbors [4]. The distribution function is advanced through (1) [3].

In each time step, the particles advect along the straight trajectories defined
by the discretized velocities. Fluid-fluid collisions are then handled through a re-
laxation towards a local equilibrium, shown on the right side of (1). In this work,
we leverage the Bhatnager-Gross-Krook (BGK) operator, a collision operator
which relaxes to equilibrium on a single time scale [5]. The equilibrium distribu-
tion is defined through a second-order Hermite expansion of a local Maxwellian
with density ρ and speed u as shown in (2) [6]. The relaxation frequency ω is
related to the kinematic viscosity of the fluid through (3) [7].

f(x+ ciΔt, t+Δt) = f(x, t)− ωΔt(f(x, t)− feq(x, t)). (1)

feq
i = wiρ

{
1 +

ξi · u
c2s

+
uu : (ξξ − c2sI)

2c2s

}
. (2)

ν = c2sΔt(
1

ω
− 1

2
) (3)

In (2), w denotes the quadrature weight normalized to unity and the speed of
sound is a lattice constant: c2s = 1

3 . I is the unit tensor in Cartesian space.
A key advantage of the LBM is that macroscopic quantities such as density

are moments of the distribution function. This means that they can be calculated
based on its summation and therefore are available entirely locally. In the study
of CoA, the fluid pressure is particularly important.

Pressure can be easily recovered through the ideal gas relation: P = c2sρ. This
means that the value is available locally which is particularly advantageous as
this means they do not require solving an expensive Poisson problem as in other
CFD methods [8].

3.2 Boundary Conditions

As prescribed by the challenge definition, we employ rigid walls in this simula-
tion. At the wall, we impose a no-slip boundary condition through the use of a
full bounce-back method. To this end, the velocity of any particle which is set
to advect to a lattice point designated as a wall node is reversed. In this case,
the directions of post-collisional particles are reversed if the prescribed velocity
points to a lattice point designated as a wall node as shown in Fig. 1. The curved
vessels are shaped on the regular (axis-aligned) grid via a staircase representa-
tion as opposed to the body-fitted grids found in direct Navier-Stokes solvers.
This does come at the expense of numerical accuracy, which has been shown
to degrade to first order [3]. This representation is improved systematically by
increasing the resolution of the mesh via increased density of lattice points.

In this model, there is one inlet for the aorta and multiple outlets for each of
the collateral vessels. The imposition of the boundary conditions is based on the
knowledge of local flow profiles as provided by the measured patient-specific data
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Fig. 1. Bounceback boundary condition. The no-slip boundary is enforced by reversing
the direction of each particle just inside the wall boundary.

of this challenge. We employ a simple method of imposing a plug flow profile
based on the flow rates. The inlet condition comes from the aortic flow measured
by a phase-constract (PC) MRI sequence providing the inlet flow over the course
of one cardiac cycle [1]. Any node defined as an inlet node has it’s velocity set
based on the time point in the simulation ensuring proper pulsatile flow that
matches the measured data.

For the outlet condition, flow rate is determined based on the percent of flow
through the various branches in the model as measured with the PC MRI as
well. This allows us to calculate the flow rate at each branch and subsequent
outlet. For most of the vessels, we are thus able to use clinically measured values
for the outflows. In order to determine flow going through the right subclavian
and right common carotid outlet faces, we use the empirical procedure based on
the following assertion from previous studies: ”in the coronary system we assume
the physiological condition that the pressure drop in each vessel is driven by the
oxygen request from the tissues nourished by the vessel” [8]. That means that
we use flow splitting conditions of φ1/φ2 = S1/S2 in which φ1 and φ2 denote the
outgoing flow rates and S1 and S2 the corresponding sectional areas. Coupling
the incoming flow rate with the known flow splitting at each bifurcation allows
us to impose consistent outflow conditions.

4 Simulation

The simulation of blood flow in the patient specific data involves the following
five steps:

1. Acquisition of medical imaging data
2. Image segmentation to identify vessel geometry
3. Grid initialization
4. Flow simulation
5. Data analysis and simulation

In this work, the first two steps were provided by the competition framework. In
this section, we illustrate how we handle (3) as a pre-processing routing, step (4)
with our HARVEY code, and (5) with a separate visualization routine coupled
with the use of Paraview [9].
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4.1 Initializing the Regular Simulation Grid

To guarantee a proper initialization of our simulation grid, we require the pa-
tient’s triangulated vessel geometry to be a closed, 2-manifold with no overlaps of
interior volume. We start by computing the axis-aligned bounding box (AABB)
of the input geometry offset by ε (we use ε = 1.8ciΔt) on each side, then dis-
cretize the box’s volume into a regular grid of targeted resolution. Note that
we choose ε to be slightly bigger than the length of the diagonal of a regular
grid cube (ε >

√
3ciΔt). With this choice, we guarantee that every interior grid

point has a neighbor not only in any 6-neighborhood but in any diagonal grid
direction also.

Next, we classify each grid point to either be inside or outside of the given
vessel geometry. Note that it would be prohibitively slow to run an inside-outside
test for each individual grid point. We therefore correctly initialize the grid points
falling inside the union of all sphere-swept triangles (the volume of a sphere-
swept triangle is given by the union of all spheres of radius ε with centers on the
triangle) and then “fill in” the inside-outside classification for all remaining grid
points. More specifically, we iterate over all vessel triangles: for each triangle, we
compute the grid points that overlap with its AABB offset by ε and then check
them against its sphere-swept bounding volume. For the remaining grid points,
we then compute the closest point on the triangle and – if the point hasn’t been
initialized yet or the current point is closer to the vessel geometry than the
previously initialized one – classify it as either inside or outside using the angle
weighted pseudonormal approach by Bærentzen and Aanæs [10]. Note that [10]
guarantees a correct inside-outside classification for points with respect to non-
convex geometries provided that we know their closest points on the mesh. After
a run through all triangles, we can guarantee to find the correct closest points
for all grid points falling in the union of the sphere-swept triangles, hence, to
correctly classify them using [10]. By using a radius of ε to sweep the triangles,
we can further guarantee to correctly initialize at least two inside grid points
in any 6-neighborhood and diagonal grid direction within a distance ε of the
vessel’s boundary. Finally, we “fill in” the remaining grid points by looping over
the three grid indices (that are monotonously decreasing or increasing in their
respective dimension) and classifying all grid points as inside if the loop index
of the most inner loop has crossed the grid boundary an odd number of times.

This classification is then refined into wall, inlet, and outlet points by using
the grid point’s 6-neighborhood (if at least one of its six neighbors are classified
as outside, we have a wall point) together with proximity information to inlet or
outlet triangles. The remaining grid points are either “fluid” nodes (inside the
wall), or “dead” (outside and not considered).

4.2 Flow Simulation

The HARVEY simulation package is designed to handle complex geometries and
to run large-scale simulations on high performance hardware resources. It has
been developed from the ground up with parallel efficiency in mind to enable
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high resolution runs. The mesh is Cartesian which enables straightforward data
handling. It is written in C and uses MPI as the communication library. This
code takes advantage of optimizations such as a) hand loop unrolling b) Single
Instruction, Multiple Data (SIMD) intrinsics c) removal of redundant operations
d) non-blocking communication [11]. The domain is split such that each proces-
sor handles a set division of the Cartesian mesh. In HARVEY a double buffer
approach is used in which a starting distribution of fluid particles is initialized
for each lattice point. The advection step propagates the particles to adjacent
lattice points and stores these values in a temporary distribution function. This
is the data exchanged with the neighboring processors, and subsequently used
for the collision step. The result of the collision step is then used to update the
local portion of the original array containing the distribution function for each
lattice point. In this manner, HARVEY acts as a typical stencil code that draws
information from its neighbors, updates its local value, and pushes this data to
the neighbors, however, the data accessed in the temporary data structure is
from another phase space as well as from another lattice location.

This double buffer approach further increases the already large memory de-
mand of the simulation. In the case of this data set when simulated at a 200micron
resolution, there are 64,435 fluid voxels in a bounding box of 11,254,320voxels. For
each lattice point, there are two buffers that make up the bulk of the memory re-
quirements. These buffers store the density data for each discrete velocity at each
lattice point as a floating point number. For a 200 micron resolution simulation,
this requires at least three gigabytes of memory. While some commodity desktops
may now be able to meet the memory needs for 200 microns, this becomes increas-
ingly difficult at finer resolutions. For a 20 micron simulation, 3 terabytes of data
are necessary. This is feel beyond the capabilities of traditional computers and re-
quires the use of large-scale platforms such as the IBM Blue Gene/Q described in
a following section, especially when simulating full heartbeats.

The second issue is the runtime for the simulation to complete. At high reso-
lutions, the LBM requires rather small time steps on the order of 10−6 seconds
resulting in the need for 700,000 time steps to complete one heartbeat. The com-
putation of the solution of the LBM equations for each lattice point in a serial
manner can take from hours to days at these resolutions. In order to drastically
decrease our time to solution, we leverage a parallel implementation that allows
us to simulate the full cardiac cycle in minutes.

For the work in this challenge, we relied on the IBM Blue Gene/Q architecture.
Similar to previous Blue Gene systems, it is built on a system-on-a-chip backbone
and has expanded options for threading and memory access. The Blue Gene/Q
system has a 64-bit PowerPC processor operating at 1.6 GHz frequency. Each
node consists of 16 cores with 4 potential threads per core. There are capabilities
for a 4-wide double precision FPU SIMD resulting in a 204.8 GFlop/s peak
performance per node [12]. Memory per node is expanded to 16 gigabytes. In this
work, we used 256 processors on 16 nodes of Blue Gene/Q for our simulations.
The resulting velocity distribution is shown in Fig. 2. This is at 0.14 seconds in
a 100 micron resolution simulation.
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Fig. 2. Mapping showing the velocity distribution at .14 seconds in a 100 micron
resolution simulation

4.3 Data Analysis and Visualization

The distribution function, f , at each lattice point is saved at a set time interval
during the simulation allowing for post processing of the data to determine
relevant macroscopic properties. It is during the post processing stage that the
data is shifted from lattice units to SI units to allow for analysis of factor like
fluid velocity, density, and pressure gradients. Only a subsample of time points
are recorded and used for visualization and analysis. In this case, checkpoints
were invoked every 20000 time steps. Paraview from Kitware is used to view the
results [9].

5 Results

We assume rigid walls as well as the Newtonian behavior of the blood. The
physical density is set at .001 g/mm3 and the dynamic viscosity is .004 gr/mm/s.

We measure the mean pressure gradient between the upper and lower body by
taking the difference of the average pressure of the fluid in the plane at the prox-
imal and distal locations. The results of simulations at three different resolutions
are provided in Table 1. The pressure proximal to the coarctation is measured
at 113.1 mmHg (systolic) and 62.3 mmHg (diastolic) which corresponds well to
the measured values of 115 mmHg and 65 mmHg respectively.
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Table 1. Mean pressure gradient at different mesh resolutions

Resolution Pressure Gradient at Diastole Pressure Gradient at Systole

200µm 10.1 mmHg 12.2 mmHg
100µm 8.7 mmHg 10.9 mmHg
50µm 8.1 mmHg 10.4mmHg
20µm 8.2 mmHg 10.3 mmHg

Table 2. Required simulation results

Peak pressure difference between Plane 1 and Plane 2 10.6 mmHg
Mean pressure difference between Plane 1 and Plane 2 9.2 mmHg
Flow splits in supra-aortic and DAo 40% and 60%
Pressure in AAo(Systolic/Diastolic) 10.3mmHg/8.2mmHg

6 Conclusion

We have presented a system to simulate blood flow in a patient specific geometry
in order to measure the pressure gradient in the aorta. The system imposes a
regular grid on the vessel geometry derived from the segmentation of MRA data
and uses HARVEY, a lattice Boltzmann application, to model the blood flow
through the arteries and to derive the fluid pressure gradients.

We have tested our system on the provided datasets from the STACOM’12
CFD Challenge and analyzed the results. This has been a useful exercise to assist
in validating our application. Our preliminary results demonstrate a 8.2 mmHg
pressure differential at diastole and 10.3 mmHg at systole.
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