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Abstract— Simulation-driven design of soft robots requires
accurate and stable simulations. In this paper, we present
an inverse finite element approach enabling simulation-ready
characterization of soft robotic materials from uniaxial test
data. Representing test specimens with finite elements, and
modeling the specimen-device coupling, we enable the simulta-
neous fitting of hyperelastic parameters to single or multiple
tests performed on specimens of varying shape and size.
To safeguard against simulation instabilities, or non-physical
behavior, we reparameterize and bound parameters using the
consistency with linear elasticity. We use our characterization
on commonly used silicones, and discuss the resolution- and
order-dependence of fitted parameters, and the Mullins effect
in the context of simulation-based design.

I. INTRODUCTION

As the field of Soft Robotics matures, the complexity of
the tackled problems will inevitably increase, and computa-
tional tools for simulation and optimization will become key
aspects of soft robot design. However, this can only happen
if soft robots can be accurately represented in simulation.
Crucially, for Finite Element (FE) simulation of hyperelastic
soft robots, we require a set of material parameters which
accurately describe the deformation behavior of the robot. A
second important consideration, in particular for optimization
and inverse design problems, is that the material parameters
should facilitate robust and fast simulation.

In practice, this means that we must fit compressible
hyperelastic models to the materials. Hyperelastic models
predict the complex, nonlinear behavior of soft robotic
materials well, even for high-strain deformations. While
most elastomers used in Soft Robotics are incompressible or
nearly incompressible, enforcing incompressibility in sim-
ulations requires constraints [1], which increase time- and
implementation-complexity. Hence, it is common practice to
use compressible models.

Traditionally, characterization of elastomers is done by
probing the uniaxial, biaxial, and potentially the triaxial ma-
terial behavior, and then fitting parameters of the analytical
models to data taken from uniformly deforming regions of
test specimens [2].

We instead propose to represent test specimens with sim-
ulation representations, modeling their uniformly-deforming
mid-regions and also their interactions at the bonding inter-
faces where they are pulled on. The motivation for this is
threefold:

1) By also considering the non-uniformly deforming parts
of specimens, we get a sufficiently rich distribution
of strains to estimate high-quality parameters from a
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uniaxial displacement-force curve only. Hence, we can
significantly improve prediction accuracy without the
need for extensive, multi-axis testing.

2) It is well known that the stiffness, and material pa-
rameters in general, depend on the resolution and
order of FEs [1]. Consequently, we can expect better
performance if we directly estimate parameters using
the representation which we later use for analysis and
design.

3) Simulation performance, stability, and robustness are
key factors when solving inverse design optimization
tasks. To safeguard against instabilities, or mitigate
problems such as locking or element inversion, it is
important to account for these aspects during charac-
terizations.

To characterize materials, we compare simulated to mea-
sured displacements, under a constraint ensuring that applied
forces are in equilibrium with the elastic response of test
specimens. Assigning the same set of material parameters
to specimens used for uniaxial or biaxial testing, we enable
the unified characterization from multi-axial data in a single
minimization problem. To solve this equilibrium-constrained
characterization, we make use of the implicit function the-
orem to compute analytical gradients, and couple standard
FE Degrees of Freedom (DoFs) to single translational DoFs
along probing directions. To warrant consistency with linear
elasticity, and ensure simulation stability, we reparameterize
hyperelastic parameters and bound them to prevent non-
physical effects.

We demonstrate our technique on three silicones com-
monly used in Soft Robotics: EcoFlexTM 00-30, Smooth-
SilTM 950, and Max MoldTM 14NV. To characterize materials
that exhibit the Mullins effect, we differentiate between the
first- and last-pull behavior, discussing them in the context
of simulation-driven design, and selection and sizing of,
e.g., artificial muscles, or pneumatic actuators. We provide
several validations where we study the distribution of strains
in a specimen’s FE representation, further motivating our
approach.

II. RELATED WORK

FE modeling is increasingly used in soft robotics work,
for simulation [3, 4, 5, 6, 7], control [8, 9, 10] and for robot
design optimization [11, 12].

Through open-source simulation packages such as SOFA
[13] and VoxCAD [14], FE modeling tools are also acces-
sible. However, as noted by [15], a key challenge for the
adoption of such tools is that the simulation must accurately



represent the physical world, requiring parameter fitting. Our
work simplifies this process for hyperelastic material models.

As well as being accurate, material parameters should
also facilitate fast and robust simulations. We believe this
is one bottleneck hindering the adoption of simulation and
also optimization tools in soft robotics, which our method
contributes to resolving.

Characterizing Hyperelastic Behavior: An extensive
review is beyond the scope of this paper, and we refer the
reader to the book by Odgen et al. [2] for fitting to analytical
models, and to a recent survey [16] for more advanced tech-
niques. The standard approach [17]—ubiquitous in academia
and industry—is to perform uniaxial, planar tension (pure
shear), and equibiaxial tests to characterize hyperelastic
materials. Material parameters are then fitted using analytic
models, which assume a particular deformation mode in
the sample. However, multiple tests are typically required
for good fits, and biaxial setups in particular are relatively
complex. To remedy this, Pamplona et al. [18] propose a
novel simpler membrane-based biaxial test. While we share
the goal of simplifying material characterization, we aim at
shifting the estimation complexity toward computation, and
producing high-quality parameters from uniaxial test data
only.

There have been some recent developments towards lever-
aging modern simulation tools for fitting hyperelastic mate-
rial parameters. Connolly et al. [19] propose to use optimiza-
tion to fit material parameters to the simulation representation
of a single FE cube element, by applying the respective
load conditions corresponding to standard material tests and
solving for material parameters which best explain the data.
However, they only present preliminary results. Inverse FE
approaches are more common in soft tissue characterization
(see, e.g., [20]). However, an equilibrium-constrained formu-
lation enabling simultaneous characterization from multiple
tests, taking resolution, order, and stability into account, is,
to the best of our knowledge, novel.

Mullins effect: The softening effect of elastomers under
strains was first observed by Mullins [21]. As discussed
by Case et al. [22], common soft robotic materials ex-
hibit this effect. While elastomers are commonly treated
as homogeneous isotropic materials, the softening induced
by prestraining a soft robot is direction-dependent, and
introduces an anisotropy. Modeling and simulating this effect
is involved [23], and beyond the scope of this paper. We
discuss this effect, and recommend to characterize the first-
pull behavior for selection of actuators, as it marks the worst-
case when it comes to stiffness, and characterize prestrained
specimens for applications in design.

III. OVERVIEW

As shown in Fig. 1, our uniaxial and biaxial character-
ization devices use linear translational stages to pull on
test specimens along orthogonal axes, aligned to global
coordinate axes. At all moving ends, displacements d̄ and
corresponding forces f̄ are measured.
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Fig. 1. Characterization Our uniaxial and biaxial testing devices (top)
enable, together with an accurate modeling of boundary conditions (bottom),
the accurate, rapid characterization of the hyperelastic behavior of common
elastomers used in soft robotics.

Representing test specimens with a FE discretization
(Fig. 2 right), we then seek hyperelastic material parameters
that minimize differences between simulated and measured
displacements, d and d̄, by minimizing objectives of the form
1
2

(
d− d̄

)2
for every moving end, and force-displacement

sample.
To improve robustness to noise, we treat the simulation

forces f as parameters, and jointly optimize displacement
objectives with force objectives of the form 1

2

(
f − f̄

)2
,

weighted by wf .
Summing up displacement and force objectives for every

moving interface k, and every sample i, we seek the param-
eters p that minimize the characterization objective

gchar =
∑
k,i

1

2
(dk(p, f ik)− d̄ik)2 + wf

∑
k,i

1

2
(f ik − f̄ ik)2. (1)

To minimize this objective, we express standard FE DoFs
that are rigidly moving with fixtures (shown in red in Fig. 3),
with displacements d along global coordinate axes. We then
solve the equilibrium-constrained problem

min
p,fik

gchar(p, f
i
k)

subject to fint(p) = fext(f
i
k), ∀k, i

plo ≤ p ≤ pup

where we ask external forces fext to be in balance with the
internal response fint of the specimens. To keep material
parameters within physically-feasible ranges, we bound them
from above and below where necessary. This formulation en-
ables the combined characterization from different tests (e.g.,
uniaxial and biaxial), by assigning different test specimens
the same material parameters p.

IV. CHARACTERIZATION

To efficiently solve for optimal material parameters, we
require a differentiable simulation. We first describe how to
compute analytical gradients for the single interface, single
sample case, and then provide a recipe to make a standard
FE implementation differentiable.



EXPERIMENT SIMULATION

Fig. 2. Representation. Our uniaxial testing device (left) and its simulation
representation (right).

A. Characterizing Soft Robotic Materials

As we illustrate in Fig. 2 for a single displacement-
force sample (d̄, f̄), we differentiate between the FE DoFs
describing the deformed configuration x within the test
specimen, and the displacement d of bonded DoFs moving
along coordinate axes. Here, x is a vector of size 3× the
number of non-interface nodes.

To discuss numerical optimization of our characterization
problem, we consider the single sample case. For this case,
as visualized in Fig. 2, we seek optimal parameters p and
an external force f that is close to the measured force f̄ ,
that explain the measured displacement d̄ with a simulated
displacement d

gchar(y, z(y)) =
1

2

(
d(y)− d̄

)2
+ wf

1

2

(
f − f̄

)2
. (2)

In this simplified form of our objective, we collect the
unknown optimization variables in a vector y = (p, f), and
the elastic response of the model in a vector z = (x, d), for
conciseness.

B. Computing Analytical Derivatives

For an efficient numerical optimization, we at least need
an analytical gradient. Due to the implicit dependence of the
elastic response on the unknowns, the gradient is the total
derivative

dygchar = ∂ygchar + ∂zgchar dyz. (3)

Most entries of the two partial derivatives, ∂ygchar =
wf (0T , f − f̄) and ∂zgchar = (0T , d − d̄), are zero because
the objective does not directly depend on the parameters p
or the deformed DoFs x‡.

To compute the derivative dyz of the elastic response of
the specimen, we make use of the equilibrium constraint

f(y, z(y)) = fint(p, z(y))− (0T , f) = 0T (4)

that balances the nonlinear internal forces with the applied
force. Because we can find an elastic response that fulfills
this constraint for sets of parameters and forces in a neighbor-
hood of a given y, the constraint can be considered constant,
and its derivative to be zero

dyf = ∂yf + ∂zf dyz = 0T . (5)

This application of the implicit function theorem provides
us with a recipe to compute analytical gradients: Whenever

‡We rely on the numerator-layout where gradients are row vectors.

we update the set of unknowns y, we run a simulation to
find the equilibrium z(y) for which the internal and external
forces are in balance. We then compute the derivative of the
elastic response by solving the system of equations dyz =
− (∂zf)

−1
∂yf , and finally evaluate Eq. 3. For the multi-

interface, multi-sample case, we run simulations for every
sample i, taking all forces k that act simultaneously into
account.

We note that the first component of the system we have to
solve, ∂zf , is the tangent stiffness matrix. Further, because
internal forces do not directly depend on f , we compute the
partial derivative ∂yf by forming the derivative ∂pfint, and
subtracting the derivative of the external forces with respect
to f . We will expand the discussion on the first term, the
derivatives of the internal forces with respect to parameters
and the elastic response, in Sec. IV-D.

C. Fitting Hyperelastic Materials
We use this formulation to fit common hyperelastic ma-

terial models to acquired displacement-force curves. While
our technique interfaces with any model for which a strain
energy density Ψ exists, we demonstrate and discuss our
characterization on three representative materials that are
commonly used for elastomer simulation, and are available
in commercial packages: the Neo-Hookean, a generalized
Mooney-Rivlin, and the 3rd-order Yeoh model.

Conditioned on having a simulator that enforces incom-
pressibility with constraints, our method could be used to fit
both compressible and incompressible models. However, FE
implementations often assume a compressible model because
constraint-based approaches tend to increase the time- and
implementation-complexity, or can cause locking [1].

For compressible models, it is important to fit parameters
that do not lead to simulation instabilities. To guarantee
stability, we reparameterize materials using the consistency
with linear elasticity, setting the Poisson’s ratio ν to a value
that is sufficiently far from 0.5. We then fit the remaining
parameters.

Volume preservation terms that depend on the determinant
of the deformation gradient, J = detF, are commonly expo-
nentiated with an even number to get rid of the sign. Hence,
it is important to keep corresponding parameters from taking
on negative values. Negative values for parameters that weigh
terms that depend on the first- or second invariants, I1 or
I2, can lead to negative energies in moderately-deformed
elements of poor quality, or highly-stretched elements of high
quality. Because negative energies are non-physical, and can
result in inverted elements, we bound these parameters from
below, to keep them non-negative.

To demonstrate our method, we use the following com-
pressible versions of the Neo-Hookean model

ΨNH =
µ

2
(I1 − 3− 2 lnJ) +

λ

2
(ln J)

2
,

a generalized Mooney-Rivlin model

ΨMR =C10(Ī1 − 3) + C01(Ī2 − 3) + C11(Ī1 − 3)(Ī2 − 3)

+D1(J − 1)2,



TABLE I
HYPERELASTIC MATERIAL MODELS.

Ψ sim. p reparam. opt. p

ΨNH (µ,λ)
µ= E

2(1+ν)

λ= Eν
(1+ν)(1−2ν)

0<E<∞

ΨMR (C01,C10,C11,D1) D1=
2(C01+C10)(1+ν)

3(1−2ν)

0<C01<∞
0<C10<∞
0<C11<∞

ΨY (C10,C20,C30,D1,D2,D3) D1=
2C10(1+ν)
3(1−2ν)

0<C10<∞
0<C20<∞
0<C30<∞
0<D2<∞
0<D3<∞

and the 3rd-order Yeoh model

ΨY =C10(Ī1 − 3) + C20(Ī1 − 3)2 + C30(Ī1 − 3)3

+D1(J − 1)2 +D2(J − 1)4 +D3(J − 1)6.

The model reparameterizations, and corresponding opti-
mization parameters with bounds, are summarized in Tab. I.
If we include the Poisson’s ratio in optimizations, we bound
it from above and below: 0 < ν < 0.5− ε for ε > 0.

D. Interfacing with a Standard FE Simulation

To interface with a standard FE implementation, the cou-
pling of a subset of DoFs to rigidly moving parts, and the
differentiation of internal forces with respect to parameters,
require further discussion.

While our characterization is independent of the element
type and order, we favor equally-sized hexahedral elements
to represent our test specimens, because: (1) numerical
integration using standard Gauss quadrature is more accurate
for hexahedral than for tetrahedral elements, and (2) there is
no distortion in the mapping from real to natural coordinates
for cubical elements. Hence, by using cubical and equally-
sized hexahedral elements, we can study the resolution- and
order-dependence of fitted parameters, avoiding any bias due
to elements of different shape and size.

To run coupled simulations, evaluations of the internal
forces fint, and the tangent stiffness ∂zfint are necessary. To
further discuss this, we assume familiarity with a standard
energy-based implementation of a hyperelastic solid, point-
ing the reader to our Appendix for a brief description.

In an energy-based formulation, the internal energy
Eint(x,p) integrates the potential energy stored in all de-
formed elements. This energy depends on the nodal de-
grees of standard elements x, and the hyperelastic material
parameters. To compute equilibria, we use the first and
second derivative of this energy, namely the internal forces
fint = ∂xEint and the tangent stiffness matrix ∂xfint.

To couple deformed nodes x on the bonding interface to
the constrained displacement d along a coordinate axis, we
assume the standard DoFs to be split into non-interface and
interface nodes, x = (x,x) (Fig. 3). We then define the
mapping x(z) = (x,X+Id) where we add the displacement

x

y

z

non-uniform
internal forces

Fig. 3. Coupling.

d to the rest configuration X of the interface nodes, with I
set to an identity matrix of appropriate size. The derivative
of this mapping, ∂zx, is the constant block diagonal matrix,
diag(I,1), with identity of size of x, and a column vector 1
with entries set to 1.

This mapping enables the evaluation of internal forces
and the tangent stiffness matrix of the coupled problem with
standard quantities

fint = ∂xEint ∂zx and ∂zfint = (∂zx)
T
∂xxEint ∂zx. (6)

As visualized in Fig. 3, with our coupling, we correctly
predict a specimen’s non-uniform response that integrates to
the force value f .

To compute the derivative ∂pfint, we assemble elemental
contributions to the Jacobian ∂px̄Eint, similarly to the assem-
bly of the tangent stiffness matrix, and then apply the chain
rule ∂pfint = ∂px̄Eint ∂zx.

E. Optimizing for Material Parameters

Given the gradient dygchar of our objective function, we
can now use a quasi-Newton optimization approach with
simple bound constraints to solve for material parameters.
We use Knitro [24] with an L-BFGS approximation of the
Hessian for this purpose. Note that the implicit inclusion of
the equilibrium constraint requires that the static equilibria
are recomputed whenever there is a change in design pa-
rameters, before we evaluate the objective or its derivative
(Sec. IV-B). Our characterization was implemented in C++,
using symbolic differentiation for derivatives with respect to
elemental DoFs and to material parameters.

For a more in-depth description of a similarly-formulated
optimization problem, see for example Ha et al. [25].

V. TESTING DEVICES

Our approach can readily be used with any standard mate-
rial testing device (e.g. Instron) , requiring only that samples
are prepared with accurately-controlled glued boundary con-
ditions.

The uniaxial and biaxial testing devices can be seen in
Fig. 1. Structural elements are machined from aluminium, for
rigidity. Both devices use linear actuators (uniaxial: Zaber T-
LSR-150B; biaxial: 4× Zaber T-LA60A) for displacing the
samples and load cells (Futek LSB200) for force measure-
ments. Experiments are run with a velocity of 12 mm/min.

Silicone samples are prepared by mixing and degassing
the RTV silicones, then injecting them into 3d-printed molds.
After curing, samples are glued to rigid interface blocks, to
provide the boundary conditions. This is done in a jig, for



accuracy. Samples are glued with either Smooth-On SilPoxy
or using Loctite 401 cyanoacrylate adhesive together with
Loctite 770 primer. The rigid interface blocks are made from
MDF, as its porosity improves adhesion.

VI. RESULTS

We test our method on Ecoflex TM 00-30, Mold MaxTM

14NV, and Smooth-SilTM 950 (all from Smooth-On, Inc), as
they are common in soft robots, and cover a wide range of
stiffnesses.

To characterize the EcoflexTM 00-30 and Mold MaxTM

14NV silicones, we use rectangular cuboidal specimens of
dimensions 100× 25× 5 mm for uniaxial testing, and unify
two of these to a cross-shaped specimen for biaxial testing.
For the stiffer Smooth-SilTM 950, we use specimens of
dimensions 80× 20× 2 mm for uniaxial testing. Specimens
are glued to rigidly moving parts at their two or four ends,
with rectangular bonding interfaces of area 25× 10 mm for
softer, and area 20×10 mm for stiffer silicone on the bottom
and top surfaces.

Except for the experiment studying resolution dependence,
we use 40 × 10 × 2 hex elements to represent longer,
and 32 × 8 × 2 elements to represent shorter uniaxial test
specimens. For the biaxial specimen, we subtract four corners
with resolutions 15 × 15 × 2 from the tessellated convex
hull of the specimen with 40 × 40 × 2 cells, resulting in
a total of 1, 400 elements. For all but our resolution and
order-dependence experiments, we use quadratic elements
with n = 27 nodes, and a 4th-order Gauss quadrature with
m = 64 quadrature points. For all characterizations, we use
a force-objective weight wf = 1.

A. Fitting to Uniaxial, Biaxial, or Combined Datasets

Uniaxially and biaxially straining EcoflexTM 00-30 speci-
mens to a maximum strain of 125% (black curves in Fig. 4),
we perform characterizations from uniaxial data, biaxial data,
and a combined fit to both datasets using our technique (top
row). For characterization, we rely on the Mooney-Rivlin
model. Using the fitted parameters to simulate the uniaxial
(top, left) or biaxial tests (top, right), we compare the fitted
behavior to the experimental data.

As seen from the comparisons, we can successfully char-
acterize the behavior from uniaxial data only. The fitted pa-
rameters predict the biaxial behavior well, and the combined
fit adds marginal improvement. This result confirms one
of our main motivations for this work: using a simulation
representation of the entire test specimen enables higher
quality characterizations from fewer tests.

Straining Mold MaxTM 14NV specimens to 50%, we
perform uniaxial, biaxial, and combined fitting (see Fig. 5).
Overall, we can predict the uniaxial and biaxial behavior
well. The fit to uniaxial data does not predict the biaxial
behavior as well as the biaxial fit predicts the uniaxial
behavior, or the combined fit predicts both behaviors.

B. Comparisons to Analytical Fitting

By tracking markers with an OptiTrack system, we ex-
tract data for the uniformly-deforming mid-regions of the
EcoFlexTM 00-30 specimens. We use this data to analytically
fit the material models (Fig. 4 bottom row) [2].

We observe the combined fit to predict the average uniaxial
and biaxial behavior best. This is to be expected if only
uniformly-deforming regions of specimens are considered.
However, most importantly, we notice a significant error
between simulations and the experimental data, clearly show-
ing that our simulation-ready characterization outperforms
analytical fitting.

C. Resolution- and Order-Dependence of Fitted Parameters

Starting with a resolution of 20 × 5 × 1, we repeatedly
increase the number of elements for a uniaxial test specimen,
multiplying the number of cells in all directions by an
increasing factor in each step. For every resolution, we
run uniaxial fitting to the displacement-force curve for the
EcoflexTM 00-30 material, using linear or quadratic elements.

As we illustrate in Fig. 6 with four Mooney-Rivlin pa-
rameters, we observe a clear dependence of parameters on
resolution and order of elements. While parameters converge
for higher resolutions, we witness a significantly faster
convergence for quadratic than for linear elements. Hence,
if robots are represented with lower resolution meshes, or
elements with significant differences in shape and size, we
favor quadratic over linear elements (number of nodes n = 8)
as the fitted parameter values change less over a wider range
of resolutions.

D. Mullins effect

To study the Mullins effect in the context of soft robotic
materials, we uniaxially strain a Smooth-SilTM 950 specimen
to 50% in a first and second pull (Fig. 7), and to 66% in
a third pull. We then fit the Neo-Hookean, Mooney-Rivlin,
and Yeoh models to the acquired curve. We observe that
the Mooney-Rivlin and Yeoh models predict the high strain
behavior better than the Neo-Hookean model.

If we worked on a soft robot where we would expect
50% strains on average, and a maximum of 66% in any
direction, it is advisable to use the first pull data to determine
parameters for actuator selection and sizing tasks. As the first
pull marks the stiffest behavior, independent of the direction,
we can consider this the worst-case. Hence, actuators need
to be sized accordingly.

If a maximum of 66% strain is expected, the silicone
cannot become softer (in any direction) than the lower bound
of the curve envelope produced by repeatedly straining a
sample up to 66%. Hence, for design, we could use the
parameters describing the average behavior, checking the
differences in performance when assigning the parameters
for the softest, and for the stiffest behavior.

Note that, to account for anisotropy due to the Mullins
effect, uniaxial testing and characterization is preferred as
it allows us to study the isolated direction-dependence, and
worst-case behavior.
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Fig. 4. Simulation-based vs. Analytical Fitting (EcoflexTM 00-30) We fit to uniaxial, biaxial, and combined datasets with our simulation-based technique
(top row) and traditional analytical fitting (bottom row). We then simulate the uniaxial (first column) and biaxial (second column) tests using the three sets
of optimized parameters. For simulation-based fitting, uniaxial tensile data is sufficient to characterize the material while the analytical fits fail to achieve a
comparable degree of prediction accuracy. For each of the fits, we have computed the Root Mean Square Error (RMSE) relative to the experimental data.
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Fig. 5. Simulation-based Fitting (Mold MaxTM 14NV) Fitting to uniaxial, biaxial, or combined datasets, we observe our combined fitting to predict the
uniaxial and biaxial behavior best. Predicting the biaxial behavior with parameters fit to uniaxial data, or predicting the uniaxial behavior with parameters
fit to biaxial data, we observe the biaxial fit to perform better. For each of the fits we include the RMSE relative to the experimental data.
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Fig. 6. Resolution- and Order-Dependence (EcoFlexTM 00-30) While
fitted parameters (Mooney-Rivlin: C01, C10, C11, D1) converge for higher
resolutions, we observe a clear dependence on resolution and order (linear
vs. quadratic) of elements used for the FE representation of specimens.

E. Strain Distribution in Simulation Representations

For a 100%-strain displacement-force sample in uniaxial
tension for EcoflexTM 00-30, we plot the distribution of
strains along the three global coordinate axes (Fig. 8), eval-
uating the deformation gradient at every quadrature point. If
only the uniformly-deforming mid-region of the specimen is
taken into account (as commonly done for analytical fitting),
all strains in the uniaxial tension direction (x-axis) are 1
(as one would expect if we stretched a specimen to twice its
length), and are compensated for with values of around −0.3
in the two orthogonal axes (due to near-incompressibility).
If we additionally consider the strain distribution at the two
ends, we get a rich enough distribution to enable high-quality
characterizations from uniaxial test data.
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Fig. 7. Mullins Effect (Smooth-SilTM 950). Performing a first and second
pull to 50%, and a third pull to 66% strain, we fit the Neo-Hookean,
Mooney-Rivlin, and Yeoh materials to the three pulls, observing that the
Mooney-Rivlin and Yeoh models predict the behavior better than the Neo-
Hookean, especially for higher strains. For each of the fits we include the
RMSE relative to the experimental data.
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Fig. 8. Strain Distribution (EcoflexTM 00-30). Histograms (log-scale)
for strains along the three global coordinate axes for a simulated uniaxial
tension sample of 100%-strain (along x-direction). If we take the two ends
into account (left column), the strain distribution is sufficiently rich to enable
fitting from uniaxial data. If only the mid-region of specimens are considered
(right column), the data is biased.

F. Sensitivity of Characterizations to Noise

In general, provided with a reasonable starting point, we
observe excellent convergence to a minimum that explains
the experimental data well. Assigning a set of parameters,
then simulating the displacement-force curve for a uniaxial
test, we started our characterization from increasingly remote
starting points, successfully recovering a set that explains the
simulated data well.

To understand the sensitivity of our characterization to
noise in the data, we added noise of increasing variance to
the forces in the EcoflexTM 00-30 uniaxial tensile dataset. As
we summarize in Fig. 9, our characterization is robust even
if significant noise (stdev σ = 1.249N ) is present.

G. Performance

As a representative example, on a 4.0 GHz Intel Core
i7-6700K quad-core processor with 32 GB of RAM, fitting
the Mooney-Rivlin material model to EcoflexTM 00-30 took
respectively 3007 s, 3250 s and 12066 s for uniaxial, biaxial,
and combined test data.

VII. CONCLUSION

We have devised an integrated technique for simulation-
ready characterization of hyperelastic materials, using a
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Fig. 9. Sensitivity to Noise (EcoflexTM 00-30). Even if very significant
Gaussian noise is added to the forces of the EcoflexTM 00-30) uniaxial
dataset, our characterization leads to parameters that explain the data well.
The RMSE behaves as would be expected, and increases gracefully.

simulation representation of the entire test specimen to
significantly improve the quality of fitted parameters from
fewer mechanical tests. By shifting the estimation complexity
toward computation, we show that even softer silicones under
large strains can be characterized from uniaxial test data.
Moreover, we discuss resolution- and order-dependence, and
the Mullins effect in the context of simulation-driven design
of soft robots.

Limitations: Our method assumes an idealized bonding
of specimens to rigidly moving parts. On the hardware side,
imperfections can lead to noise in the data, especially if
debonding occurs. In simulations, we observe peak stresses
close to boundary conditions, and, if implemented as Dirich-
let conditions, stresses tend to be overestimated. Although
our sensitivity study confirmed good fitting performance in
the presence of noise, these issues could lead to a bias in
our estimates.

Future Directions: We showed results for combined
fitting to uniaxial and biaxial data. While our technique
interfaces with more than these two tests, we have yet to
study the difference that, e.g., a triaxial test would make.
By solving for a specimen’s rest configuration instead of
material parameters, our computational technique could fur-
ther be used to identify optimal test specimens [26, 27] that
maximize strain distributions required for unbiased charac-
terization from uniaxial, or multiaxial data.

So far, we have considered hyperelastic materials and
ignored viscoelastic effects. However, our formulation could
also be extended to model viscosity.

APPENDIX: HYPERELASTIC SOLID SIMULATION

To evaluate the undeformed or deformed configuration at
the natural coordinates ξ ∈ R3 within an element, we rely
on standard Lagrange shape functions Ni(ξ) corresponding
to element nodes i. For example, for the undeformed con-
figuration, we interpolate the undeformed nodes Xi ∈ R3

X(ξ) =

n∑
i=1

XiNi(ξ). (7)

To measure strains within an n-node element, we define
the deformation gradient as the product of the Jacobian of



the interpolated deformed nodes xi, and the inverse of the
Jacobian Xξ of the undeformed configuration

F(ξ) =

(
n∑

i=1

xi∂ξNi(ξ)

)
X−1

ξ (ξ) (8)

where the partial derivatives ∂ξ of the shape functions are,
in general, not constant.

To determine the internal energy of the solid, we integrate
the strain energy density Ψ over the volume E of the
isoparametric element, taking the change of variables from
real to natural coordinates into account

Eint(x,p) =
∑
e

∫
E

Ψ(F(x, ξ),p) detXξ(ξ) dξ. (9)

The internal energy depends on the deformed discretized
mesh nodes, collected in a vector x of size 3× the number
of nodes, and the material parameters p.

To evaluate the energy, we approximate the integral over
E with an m-point Gauss quadrature

m∑
j=1

wjΨ(F(x, ξj),p) detXξ(ξj). (10)

where wj is the weight that corresponds to point ξj .
To include gravity, we integrate the dot product between

the gravitational vector g and the interpolated displacement
u(ξ) =

∑n
i=1(xi −Xi)Ni(ξ) over the volume enclosed by

the solid

Egrav(x) =
∑
e

∫
E
ρgTu(ξ) detXξ(ξ) dξ, (11)

approximating the integral with the same quadrature scheme.
Another source of external energy is work done by nodal

forces fi ∈ R3

Eext(x) =
∑
i

fTi (xi −Xi). (12)

To compute the deformed configuration, we minimize the
total potential energy

E(x) = Eint(x,p)− Egrav(x)− Eext(x) (13)

to first-order optimality, ∂xE = 0, using a standard Newton.
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