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A Versatile Inverse Kinematics
Formulation for Retargeting Motions
onto Robots with Kinematic Loops

Christian Schumacher∗,1, Espen Knoop∗,1, Moritz Bächer∗,1

Abstract—Robots with kinematic loops are known to have
superior mechanical performance. However, due to these loops,
their modeling and control is challenging, and prevents a more
widespread use. In this paper, we describe a versatile Inverse
Kinematics (IK) formulation for the retargeting of expressive mo-
tions onto mechanical systems with loops. We support the precise
control of the position and orientation of several end-effectors,
and the Center of Mass (CoM) of slowly walking robots. Our
formulation safeguards against a disassembly when IK targets
are moved outside the workspace of the robot, and we introduce
a regularizer that smoothly circumvents kinematic singularities
where velocities go to infinity. With several validation examples
and three physical robots, we demonstrate the versatility and
efficacy of our IK on overactuated systems with loops, and for
the retargeting of an expressive motion onto a bipedal robot.

Index Terms—Kinematics; Parallel Robots; Methods and Tools
for Robot System Design

I. INTRODUCTION

ROBOTS consisting of kinematic loops have several ad-
vantages over designs that consist of a fully actuated

kinematic tree: they have superior stiffness, allow the place-
ment of actuators where there is space, and often exhibit
an advantageous payload-to-weight ratio [1]. However, while
there are clear mechanical advantages, kinematic trees remain
a popular choice in legged robots and related systems due
to the complexity of the design, control, and simulation of
mechanisms containing loops.

For robots with loops, or parallel robots, designs are com-
monly made of submechanisms for which, for example, a
closed-form analytical model exists, and inverse kinematics
can be formulated by interfacing between submodules. How-
ever, this modeling forgoes the true potential of robots with
loops, because for every type of submechanism a custom
module has to be written from scratch [1], unnecessarily
restricting the mechanical design of custom robots.

In this paper, we propose a versatile inverse kinematics that
enables the kinematic control of general robotic systems with
(1) position and orientation objectives to precisely control the
motion of end-effectors or bodies, and (2) a CoM objective to
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Fig. 1. Starting from an input motion, in this case an animated walking cycle
(top), our pipeline solves the IK problem of retargeting this motion onto robots
with arbitrary kinematic structures (middle). By including a CoM objective
in the IK, we obtain a stable gait that can be executed on a physical robot
(bottom). Note that a naive motion retargeting, without the CoM objective,
would cause the robot to fall over.

keep the CoM within the support spanned by the contact of the
robot with the ground. See Fig. 1 for an illustrative example
of our pipeline.

Our approach combines a constraint-based formulation for
mechanical joints with an objective-based formulation for IK
targets. This means that the returned IK solution is as close as
possible to the specified targets, in a least-squares sense, while
we guarantee that the mechanical constraints of the robot are
satisfied exactly. Moreover, we safeguard against kinematic
singularities at which velocities go to infinity.

We compare our IK formulation to an implicit approach
where actuated degrees of freedom are solved for directly,
with a first-order optimality constraint on forward kinematics.
In contrast to our formulation, the mechanical system disas-
sembles if not all IK targets can be met. Moreover, in our
IK formulation, we only need derivatives, and hence building
blocks, from a multibody kinematics implementation, making
it straightforward to add inverse kinematics support to existing
forward kinematics codes.

With validation examples, we demonstrate that our IK works
on mechanical systems containing all common types of active
and passive joints. With three physical robot examples, we
demonstrate how (1) a rich dancing motion can be transferred
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over to a 6-DoF pair of legs with a single end-effector
objective, (2) an expressive walking cycle can be retargeted
onto a bipedal robot with complex loops, with the help of
our CoM objective, and (3) how we can safeguard against
velocity singularities when retargeting motions from a digital
to a physical arm with fewer degrees of freedom. Our IK
can hence be understood as a first-order approximation of a
dynamics model, without having to deal with force and torque
transfer, or frictional contact.

II. RELATED WORK

There is a large body of related work on inverse kine-
matics in robotics, and related fields such as, e.g., computer
graphics [2]. While most IK formulations target serial or tree-
like robots, inverse kinematics for serial-parallel hybrid robots,
or mechanical systems that contain kinematic loops, are less
common despite their desirable properties such as increased
accuracy, stiffness, or payload capacity [1]. We target the latter
category of robots with our IK.

a) Serial Robots: Tree-like robots are usually mod-
eled as reduced or generalized coordinate formulations, and
closed-form analytical [3], learning-based techniques [4], and
Jacobian-based numerical approaches [5] are common. Tar-
geting robotics control, Pechev [6] introduced an IK that
does not require a matrix inversion (increased speed), more
robustly handles kinematic singularities, and supports multiple
end effectors. Jacobian-based formulations were also extended
to handle joint limits (see, e.g., [7]), with Newton-based
approaches handling them better in general [8]. Like [9], we
enable the control of the CoM position of the robot, and
like [6], our IK handles multiple targets gracefully. However,
in contrast, our IK supports arbitrary mechanical systems,
containing kinematic loops.

b) Parallel Robots: A large body of work has focused
on parallel robots, or Parallel Kinematic Machines (PKMs).
An extensive discussion is beyond the scope of this paper,
and we refer to [10] for a comprehensive overview. For most
studied PKMs, the IK problem is relatively simple [10] and
is solved by dividing the mechanism into a number of simple
kinematic chains which are then tackled analytically. A central
challenges in the study of PKMs is the avoidance of workspace
singularities [11]. More recent work on PKMs includes [12],
where the kinematic analysis of an overactuated parallel robot
is considered, and [13], where a formulation is provided
which is applicable also to robots with redundant degrees of
freedom. However, these approaches are not readily applicable
to arbitrary robot topologies as considered here.

c) General Serial-Parallel Robots: To represent gen-
eral robots with loops, maximal coordinates are commonly
used [14]. As a recent survey on serial-parallel hybrid robots
points out [1], the “kinematic analysis of generic series-parallel
hybrid robots is an open problem”, let alone inverse kine-
matics. For specific serial-parallel topologies, known solutions
for building blocks (submechanisms) could be used (e.g., IK
for a 6R manipulator [15], [16], [17]). Hybrid approaches
where the loops in mechanical systems are cut, and consis-
tency constraints are introduced, have also received attention

(see, e.g., [18]). However, these mixed representations where
reduced and maximal coordinates are combined, are very
complex. In contrast, our kinematics and inverse kinematics is
applicable to general mechanical systems that are modeled as
multibody systems, represented with generalized coordinates.

Analytic IK solutions are also common (see for exam-
ple [19, 20, 21]), however they are laborious, and do not
generalize to arbitrary mechanisms.

There are relatively few examples in the literature of serial-
parallel robots where the parallel elements cannot be treated as
submodules in the serial chain. One such robot is the series-
parallel biped presented by Gim et al [22]. We believe that
one reason why such robots are not more widespread is their
challenging inverse kinematics and the lack of suitable off-
the-shelf IK solvers.

III. FORWARD KINEMATICS

Before delving into the specifics of our inverse kinematics,
we summarize how kinematics simulations are performed. To
motivate and illustrate our representation, we reference the
four-bar linkage example in Fig. 2.

In what follows, we will first introduce the rigid body
representation, and discuss constraints the actuators and joints
impose. We will then discuss how the unknown states can be
solved for after the actuators are stepped.

(a) Initial configuration (b) Stepped configuration

Fig. 2. Four-bar linkage in its initial (a) and a stepped configuration (b). The
linkage is driven by a single actuator (yellow circle) and has three passive
joints (black circles). One of the four bars is fixed relative to the world frame
(dark grey).

A. Representing Rigid Bodies
We represent the position of a rigid body in global coordi-

nates with its CoM c ∈ R3. This simplifies the formulation of
our CoM objective. Moreover, it means that our method could
easily be integrated with common dynamics representations,
where the use of frames centered at c is often preferable
because they enable the decoupled treatment of the linear and
angular motions in the Newton-Euler equations of the bodies.

To represent a body’s orientation, we rely on 4-coordinate
unit quaternions q, as they do not suffer from singularities.
This comes at the cost of enforcing unit length constraints.

Summarily, we represent the i-th component in an assembly
with a 7-coordinate state vector si, consisting of the position
and orientation of the body, and stack them for an n-body
assembly to represent its maximal coordinate state with the
state vector s ∈ R7n. For example, for the four-bar linkage
in Fig. 2, the number of components is 4, and the state of
the assembly is represented with a 24-vector s. After stepping
the actuators, we solve for the state of the assembly so that
all constraints are fulfilled. Hence, this state is considered
unknown in forward kinematics.
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B. Representing Kinematic Constraints

Passive or active joints constrain the relative motion be-
tween pairs of bodies. To formulate constraints, we attach local
frames that rigidly move with the bodies, to either body i and
j (see Figs. 3 and 4). We then transform these two frames
to global coordinates, and impose restrictions on their relative
translations or rotations when solving for the unknown state
for a stepped configuration.

initial configuration stepped configuration
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Fig. 3. A revolute joint in its initial (left) and a stepped configuration. To
formulate constraints, we attach local frames to either body. After stepping the
motors, the origin of frame i, transformed to global coordinates, has to equal
the transformed origin of frame j (translational constraints). In addition, the
transformed hinge axis ax on body i has to remain orthogonal to the other two
transformed axes, ay and az , of frame j at all times (rotational constraints).

a) Passive Joints: Without loss of generality, it is con-
venient to assume that all bodies, and the global coordinate
frame, have the same orientation in the initial configuration.
To see why this is advantageous, it is best to study a specific
example: If the orientations of bodies i and j are set to the
identity, the three frame axes ax, ay , and az are the same in
global and local body coordinates (Fig. 3, bottom row, left).
Moreover, the initial location of the joint in global coordinates,
x, can be transformed to local coordinates, xi and xj , by
subtracting the initial positions of either body (top row, left).
Assuming the revolute axis to point in the direction of the
x-axis in either local frame, we formulate the constraint for a
revolute joint by asking the transformed revolute axis on body
i to remain orthogonal to the transformed y- and z-axes of
body j (bottom row, right)

J (si, sj) =

!

"
R(qi)xi + ci −R(qj)xj + cj

(R(qi)ax) · (R(qj)ay)
(R(qi)ax) · (R(qj)az)

#

$ = 0

where R is the rotation matrix that we extract from the unit
quaternion with a variant of the Euler-Rodrigues formula.

Note that this particular formulation with dot products
between pairs of transformed axes for rotational constraints,
leads, in general, to the minimal number of constraints: A
revolute joint constrains all but one rotational degree of
freedom between the two bodies. Hence, the minimal number
of constraints is 5. Common joint types, such as Cartesian,

cylindrical, fixed, prismatic, spherical, and universal joints, can
be formulated analogously.

(a) initial configuration (b) stepped configuration

(i) (ii)

Fig. 4. A Revolute actuator in its initial (a) and stepped (b) configuration.
By first rotating the local y-axis on body i by p about the local hinge axis
ax (i), and asking this axis, after transforming it to global coordinates, to
remain orthogonal to the transformed z-axis of the frame on body j (ii), we
complement the revolute joint constraints to form an actuator.

b) Active Joints: By parameterizing the remaining de-
grees of freedom, we can complement every joint type with
less than 6 constrained degrees of freedom (all but the fixed
joint) to form an actuator. For example, for a revolute actuator
(Fig. 4), we parameterize the remaining rotational degree of
freedom about the revolute axis with a parameter p. To form
a constraint, we first rotate the y-axis about the revolute axis
in local coordinates of body i (i), before transforming it to
global coordinates and asking it to remain orthogonal to the
transformed z-axis of body j (ii)

A(p, si, sj) =

%
J (si, sj)

(R(qi)R[p,ax]ay) · (R(qj)az)

&
= 0.

To rotate the y-axis, we apply the rotation matrix R[p,ax] that
represents a rotation of p about the revolute axis in local body
coordinates of i. A prismatic actuator, and also less common
actuators with more than one actuated degree of freedom, can
be formulated analogously.

c) Unary Constraints: So far, we have discussed binary
constraints that constrain the relative motion between pairs of
bodies. However, to guarantee that the constraint Jacobian is
full rank, we need to constrain the rigid body motion of the
overall assembly. To this end, we fix at least one body in space
with 6 constraints of the form

U(si) =

%
ci − c
Im(qi)

&
= 0

where the position of the body is kept at its initial position
c, and the initially zero imaginary part of the unit quaternion
that represents the bodies orientation, is kept zero (see dark
grey component in Fig. 2).

C. Solving for the Kinematic Motion

To solve for the kinematic motion, we collect all actuation
parameters in a parameter vector p, and all joint, actuator,
and unary constraints, together with n unit length constraints
of the form qi · qi − 1, in a constraint vector

CFK(p, s(p)) = 0

that we ask to remain zero after setting p to new values.
Because the state of the assembly changes whenever we make
changes to parameters, there is an implicit dependence, s(p),
between the two.

Note that there are often more constraints than unknowns,
even though we formulate the joint and actuator constraints
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with the minimal number of equations. Especially assemblies
that contain planar subassemblies result in overconstrained
systems, for example the four-bar linkage in Fig. 2: The four
bodies amount to 4 × 7 = 28 unknown states. Revolute
joints add 5 constraints, revolute actuators add 6, and we
have 4 quaternion unit-length constraints, and one grounded
component, for a total of 31 constraints. Only because all
revolute axes point in the same direction, the motion is
kinematically feasible.

Forward kinematics, in its general form, is therefore a
nonlinear least squares problem

min
s

fFK(s) with fFK(s) =
1

2
CFK(s)

TCFK(s) (1)

that we can solve with Gauss-Newton steps
'
∂CFK(sk)

∂s

(T
∂CFK(sk)

∂s
dk = −

'
∂CFK(sk)

∂s

(T

CFK(sk)

where dk is the k-th Newton direction along which we
perform standard backtracking line search [23]. Because the
translational and rotational parts of the constraints are scaled
differently, the constraint Jacobian can be conditioned unfavor-
ably. To counteract this ill-conditioning, we scale all rotational
constraints (e.g., the first three constraints in J ) with the
average distance between pairs of passive or active joints.
Because fFK is well-behaved, and minimizations are started
from previous solutions which are close to the optimum, the
Gauss-Newton algorithm is the preferred algorithm. However,
for remote starting points, the Levenberg-Marquardt algorithm
may outperform the Gauss-Newton method [23].

IV. INVERSE KINEMATICS

For IK, the problem is reversed. Instead of solving for the
state after updating the actuation parameters p, we seek to find
optimal actuation parameters, and indirectly also the assembly
state, such that a single or several end effectors (e.g., feet of
a legged robot) follow a desired trajectory.

IK target

IK target

(a)

(b) (c)

frame objective
foot trajectory

CoM objective
projects into support

Fig. 5. If we ask for an IK target that cannot be reached with the physical
robot (a), we favor a solution where the distance to the IK target is minimal
while the robot remains in an assembled state (b). In addition to position and
orientation objectives, we provide the user with control over the CoM location
(c).

A. Desiderata

A problem that we seek to address within the scope of
this paper, is to safeguard against parameter configurations
that are not physically feasible. For example, for the four-bar
linkage in Fig. 5 (a), a full rotation of the revolute actuator
is not possible without causing a disassembly. To make our
IK a versatile tool in different robotic animation tasks, we
further add the support of a sufficiently complete set of IK
targets to our list of desiderata. In addition to tracking end
effector positions and orientations, we add a CoM objective.
This means we can ensure that the CoM projects into the
support spanned by dynamically changing contact areas with
the ground (Fig. 5 (b)), enabling our pipeline to be used for
quasi-static walking (Fig. 1).

Moreover, if actuation configurations are physically feasible,
targets should be satisfied exactly. Otherwise, if not all of the
targets can be satisfied simultaneously, the user should have
control over their relative importance.

B. Specifying IK Targets

To achieve the second goal, it is best to formulate IK targets
as objectives rather than hard constraints.

To formulate IK objectives, we attach frames to individual
bodies i (Fig. 5, frame objective). Frames are specified in
global coordinates, with respect to the initial configuration.
The initial position of the frame, x, is transformed to local
body coordinates by subtracting the initial position of body
i, resulting in the position xi. Because all orientations of all
bodies are set to the identity in the initial configuration, the
three global frame axes ax, ay , and az are the same in local
coordinates.

a) Frame Objectives: To penalize differences between
the current position of a frame, and a target position x̂, we
minimize position objectives of the form

fpos(s) =
1

2
‖R(qi)xi + ci − x̂‖2.

With our orientation objectives

fori(s) =
)

a∈{x,y,z}

(1− (R(qi)aa) · âa),

we penalize differences between frame and target orientations.
Together, these two objectives can be used to formulate

frame objectives. With 3-component weights wpos and wori
that vary per IK target, and weigh the relative importance of
the position error along the three global coordinate axes, and
the error about the three local frame axes, we provide the
user with a fine-grained control over tradeoffs between the
individual objectives. By setting a subset of weights to zero,
only a single axis, or two axes objectives can be formulated.

b) CoM Objective: To enable control of the CoM of the
robot, we penalize differences between a user-specified target
ĉ and the mass weighted sum of the positions of the individual
bodies

fCoM(s) =
1

2

*****

+
n)

i=1

Mi

M
ci

,
− ĉ

*****

2

.
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where M is the sum of all body masses Mi. Like for our
position objectives, we introduce a 3-weight vector wCoM to
separately control the error along the three global coordinate
axes. For example, for the Walker example, we disable the
vertical component of this objective.

C. Solving for Actuation Parameters

For forward kinematics, we set actuation parameters to new
values, then solve for the state vector that minimizes the
objective fFK. At the minimum, the gradient of the forward
kinematics objective is zero.

a) Implicit Formulation: Hence, a first inverse kine-
matics formulation that comes to mind is enforcing first-
order optimality of the forward kinematics as constraint, then
evaluating the IK objective with the implicitly defined state
that minimizes fFK

min
p

fIK(s(p)) s.t. ∇sfFK(p, s(p)) = 0. (2)

This problem can be solved with a standard quasi-Newton
method by enforcing the constraints implicitly. To this end, for-
ward kinematics is first performed whenever the IK objective,
or its gradient, is evaluated. To compute the analytical gradient,
we then apply the chain rule and make use of the implicit
function theorem to compute the sensitivity of the state with
respect to the parameters: in a small neighborhood around
the FK solution, the derivative of the first-order optimality
constraint remains zero, and hence

∇pfIK =
∂fIK

∂s

ds
dp

with
ds
dp

= −
'
∂2fFK

∂s2

(−1
∂2fFK

∂p∂s
.

In evaluations of the IK gradient, we need, besides the Hessian
of the FK objective, the Jacobian of fFK with respect to
the state and actuation parameters. All necessary derivatives
can be computed with a symbolic differentiation package. To
keep our formulation general, we take symbolic derivatives of
each individual constraint type, then assemble the gradients,
Jacobians, and Hessians for a specific assembly, at runtime.

However, the first-order optimality constraint does not guar-
antee that the FK objective evaluates to zero, meaning that the
FK constraints CFK equal zero. When setting the actuation
parameters to values that are not physically feasible, FK
returns the minimal norm solution. If we ask for IK targets
that are not physically feasible, this implicit formulation will
converge to a solution where all IK targets are fulfilled, but
the robot is in a disassembled state (see Fig. 5 (a)).

b) State-based Formulation: To fulfill our first desider-
atum, we instead rely on a state-based formulation, and read
off actuation parameters in a post-processing step. To this end,
we replace every active joint with its corresponding passive
joint. More formally, we replace all constraints A that depend
on the actuation parameters p with the corresponding passive
joint constraints J in CFK, resulting in the reduced constraint
vector CIK. For example, for our four bar linkage, we replace
the revolute actuator with a revolute joint, reducing the overall
number of constraints from 31 to 30.

This procedure turns our robots into “puppets” that would
collapse under gravity. This is precisely what we want, because

(1) it enables us to move individual components with IK
objectives without resistance from actuators, and (2) we can
formulate an optimization problem directly on states

min
s

fIK(s) +R(s) s.t. CIK(s) = 0 (3)

where we enforce the robot to remain in an assembled con-
figuration with a set of equality constraints, and fIK(s) sums
up all IK objectives. Because the IK objectives may not fully
prescribe the robot state, we add a regularizer R(s) to “choose”
a solution in this subspace.

A regularizer that leads to intuitive solutions keeps the
current state close to the previous state s̄ of the robot

Rstate(s) =
1

2
‖s− s̄‖2.

This regularizer ensures that the problem is always well-
posed, even if only a single IK objective is specified. Hence,
this formulation provides an ideal tool to iteratively explore
how to best transfer a motion over to a robot. Another advan-
tage of the state-based formulation is that only building blocks
from forward kinematics (only derivatives of constraints with
respect to states) are needed, making it significantly easier to
add IK support to an existing forward kinematics implementa-
tion. For optimization, we use standard line search Sequential
Quadratic Programming (SQP) [23].

After optimization, we read off the actuation parameters
from pairs of states of neighboring bodies. To disambiguate
and return the “correct” angle, we compare extracted to
previous angles for rotational degrees of freedom and add
or subtract multiples of 2π to obtain a temporally-consistent
trajectory.

D. Regularizing Velocities

As we illustrate with the retargeting of an arm motion onto
our Boxer character [24] in Fig. 7, velocities of individual
bodies can go to infinity even though we move the end-effector
slowly and continuously in Cartesian space. While we could
use our state regularizer to stay a safe distance away from such
kinematic singularities, we would need to set the weight wstate
to a high value, resulting in retargeting results that look like
the robot is moving through a viscous fluid. Hence, a more
fine-graded control is necessary.

While we could formulate standard actuator-centric con-
straints to keep the actuator velocities within the limits sup-
ported by the hardware, we favor a body-centric regularization:
as soon as a hard constraint becomes active, the optimization
“walks” along the constraint manifold until the next constraint
becomes active, leading to undesired discontinuities in the
retargeting result. With a regularizer, we provide the user with
better control over the smoothness of the resulting motion,
and distribute the “limits” among the affected components. By
lowering the bound at which the regularizer becomes active,
we can always find solutions where all actuator velocities
remain in the required limits as we demonstrate in our Results
section.

To penalize angular velocities from taking on too high
values, we compute the dot products of the three frame axes of
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the current orientation of the body (columns of R(qi)), and the
corresponding frame axes of its previous orientation (columns
of R(q̄i)). If these dot products (compactly expressed with
the trace operator) become too small, the regularizer

Rvel(s) =

n)

i=1

greg
-
3− tr[RT (q̄i)R(qi)]

.
(4)

becomes active where the function

greg(x) =

/
0

1
ln
2

x
tvel

33

, if x > tvel

0, otherwise
(5)

ensures that the regularizer, and its gradient, are only taking on
non-zero values above a user-specified threshold tvel. A similar
regularizer could be formulated for body positions, if required.
With a weight wvel, we further control the importance of this
regularizer relative to fIK and Rstate.

V. RESULTS

We demonstrate our pipeline on three examples, highlight-
ing different aspects and functionality of our framework. For
all the examples, the input to our pipeline is a digital animation
created using Autodesk Maya, from which we extract the
relevant tracking frames with a custom script. We use a custom
Solidworks plugin to extract the kinematic models directly
from the CAD models. See Tab. I for key statistics for the
three demos. Timings are reported for an Intel Core i7-6700K
CPU. For all our motions, the input animation is sampled at
1200 frames per second. All of our robots use Dynamixel
XH-430 actuators. Unless otherwise noted, regularization and
objective weights are set to unity.

1) Validation: To demonstrate that our pipeline supports all
common joint types, we created a 1-Dof example mechanism
that incorporates all common joints. We attach an IK target to
the end effector, and solve the IK on the mechanism. See Fig. 6
(left). This illustrates the generality of our method. We also
created a serial chain combining 6 revolute and 6 prismatic
actuators, Fig. 6 (right), and ran IK for a single frame attached
to the end effector. Note that with 12 DoFs, a single frame
is insufficient to fully constrain the state of the robot; our
regularizer that pulls us towards the previous state makes the
problem well-posed.

We also investigate how the IK performance changes with
the input framerate, by subsampling the animation for the
“dancer” robot. We find that as the framerate is reduced, there
is only a slight increase in the computation time, see Fig. 6
(c). At lower framerates, our performance is significantly faster
than real-time.

2) Boxer: Our pipeline supports arbitrary kinematic struc-
tures, and this of course includes serial robots. As a first
example, we retarget an arm motion onto the 4-DoF arm
of our Boxer robot [24]. The shoulder joint has 3 degrees
of freedom, and can exhibit a kinematic singularity. This is
also representative of standard robot arms. We place a single
tracking frame at the robot end effector, tracking both position
and orientation.

To demonstrate how our velocity regularizer avoids singu-
larities, we generated an input animation that moves through
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IK target
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prismatic actuator (6x)

revolute actuator (6x)

IK target frame

neutral pose

revolute actuator: 1; revolute joint: 7, 8; spherical 
joint: 2, 6, 11; universal joint: 3, 4; cylindrical 
joint: 5; prismatic joint: 9; fixed joint: 10; parallel 
joint: 12 (linked to motor crank)
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Fig. 6. Validation. (a) Test mechanism with all common joint types; when
specifying a target motion on the end effector (bottom image) we can solve
the resulting IK problem. (b) Serial robot with 6 revolute and 6 prismatic
actuators, tracking a single frame at the end effector. (c) Computation time
per frame for changing input framerate.

TABLE I
KEY STATISTICS

Example #act #jnt #comp targets t

Boxer 4 - 5 Fr (1) 0.14
Boxer (reg.) 4 - 5 Fr (1) 0.23
Dancer 8 4 12 Fr (1) 0.68
Walker 12 24 31 Fr (3), CoM 13.99

#act: number of actuators; #jnt: number of passive joints; #comp: number
of components; targets: the types and number of IK targets. Fr: frame, CoM:
Center of Mass; t: algorithm runtime per time step (ms). For the Boxer, we
report timings with and without the regularizer.

the kinematic singularity. In the animation, which uses a
spherical joint at the shoulder, the angular velocities are
smooth and bounded. However, a naive motion retargeting
leads to discontinuous motor profiles with high peak velocities.
By increasing the velocity regularizer weight, we are able
to circumvent the singular configuration, and obtain motor
profiles that are smooth and well within the velocity limits
of the hardware. Fig. 7 shows the joint velocities over time
for the animation, for the two cases.

We set the state regularizer weight to 2 × 10−4. For the
velocity regularizer, we set the weight to 1 × 10−4, and the
threshold to 1.11× 10−5 (corresponding to 90% of the rated
maximum actuator velocity). For the unregularized version,
the target is tracked perfectly: mean positional error 0.02 mm;
max error 3.89 mm (at first singularity), but the peak joint
velocity is 147.04 rad/s which cannot be realized. With the
regularized version, the peak joint velocity is 5.90 rad/s, the
mean positional error for the sequence is 1.66 mm, with a
peak error at the singularity of 24.03 mm.

We also refer to the supporting video, where the different
motion sequences can be seen on both the simulated and
physical robot; there is excellent agreement between the two.

3) Dancer: As an example of non-trivial parallel kine-
matics, we consider a pair of animatronic legs featuring a
novel kinematic structure that allow it to perform highly
expressive motions, in particular with the hips. The feet are
fixed in place, so overall the mechanism forms a kinematic
loop with 12 components and 12 joints. See Fig. 8 (left).
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Fig. 7. Boxer. Left: the simulated and physical robot, shown in the neutral pose. Right: plot of the joint velocities over time, for the unregularized (dotted
lines) and regularized (solid lines) versions. The inset views show the configuration change of the robot before and after the velocity spike, with motors in
red indicating that the velocity limit is exceeded. See also the supporting video.

frames from dancing sequence (simulation)

neutral pose

schematic view
frames from dancing sequence (physical robot)red: actuator; blue: passive

Fig. 8. Dancer. The robot features a novel kinematic structure (see schematic
view) with 6 degrees of freedom, 12 joints, and 8 actuators, that allows for
expressive hip motions. In the simulated dancing frames, the tracked frame
on the pelvis can also be seen.

As an animation input, we use a dancing sequence. As the
robot has 6 degrees of freedom, a single frame attached to the
pelvis is sufficiently for uniquely specifying the robot motion.
We place actuators at 8 of the joints, thus making the robot
overactuated. This means that singularities in the operating
range can be eliminated. Our IK formulation handles the
overactuation without modification. We set the regularization
weight to 1×10−6.

Frames from the resulting sequence are shown in Fig. 8
(right), and we also refer to the supporting video. The IK tracks
the animation input perfectly, with maximal positional and ro-
tational objective errors of 2.46×10−5 mm and 1.22×10−5 rad
respectively.

4) Walker: As an additional demonstration of our pipeline,
we consider the serial-parallel bipedal walking robot presented
by Gim et al [21, 22]. This robot features a novel 6-DoF leg
mechanism where a single actuator is placed in the foot and
the remaining 5 actuators are placed in the hips, reducing the
moving mass of the leg.

In the original paper, the authors derive the forward and
inverse robot kinematics analytically; while this can be done

for the robot considered here, it is a laborious and time-
consuming task. Moreover, if joint positions or orientations
were to be perturbed, making joint axes non-parallel, analytic
inverse kinematics would become significantly more challeng-
ing. Our approach, in contrast, is compatible with arbitrary
kinematic structures and does not struggle with non-parallel
joints.

For slow walking, a quasi-static approach is sufficient. The
requirement for stable bipedal walking is then that the overall
CoM of the robot must project into the support polygon
spanned by the feet currently in contact with the ground. We
take as input a walking animation (Fig. 1: top row). Note that
the animated character has a “normal” joint configuration with
hips, knees, and ankles; our pipeline takes care of retargeting
this onto the serial-parallel leg mechanism.

We first perform a naive motion retargeting, by tracking
frames on the two feet and on the pelvis. While the motion
is visually close to the input animaton (max tracking error:
0.51 mm), the physical robot falls over immediately as the
CoM does not project into the support. For this, the regular-
ization weight is set to 1×10−2.

Next, we add a CoM objective to the IK. The feet objective
weights are set to [100, 100, 100] and [10, 10, 10] for the
orientation and position, respectively. The orientation weight
is high, as the size of the feet means that orientation errors
cause dragging on the ground. The CoM position weight is
set to [10, 0, 10] (with y being the vertical direction), and the
pelvis frame weight is set to [0, 1, 0]. The pelvis frame weight
is set lower, as it is not critical for the robot’s function.

In the single-support phase of the gait, we ask for the CoM
to lie within the support of that foot, and in the dual-support
phase we ask the CoM to move along a line connecting the
two feet. We achieve a max positional tracking error of the
frames of 1.11 mm, and a max tracking error for the CoM
objective of 1.30 mm. Moreover, as shown in Fig. 9, the robot
is able to walk without falling over. See also the supporting
video for the full walking sequences in simulation and on the
physical robot.

VI. CONCLUSION

We have devised a versatile inverse kinematics for the retar-
geting of expressive motions onto complex robots with kine-
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CoM-optimized RetargetingNaive Motion Retargeting

Tracked FramesInput Inverse Kinematics

CoM

Inverse Kinematics

CoM

Physical Result Physical Result

Fig. 9. Walker. Starting from a walking animation, we track frames attached to the pelvis and feet. A naive motion retargeting is visually close to the input,
but the robot falls over as the CoM does not project into the support. With a CoM objective, we can successfully retarget the motion onto the walking robot.

matic loops. Compared to state-of-the-art approaches typically
used for parallel and series-parallel robots, our formulation
supports arbitrary mechanism topologies.

One limitation of our modeling is time complexity. For
use in closed-loop control, our IK is ill-suited for high-DoF
mechanical systems. An interesting future direction is the
exploration of mixed representations where reduced coordi-
nates are used for the minimum spanning tree of the robot,
and a maximum coordinate representation for “closing” the
loops [18]. Such hybrid formulations reduce computational
complexity, and also ensure that joint constraints are satisfied.
However, a challenge is that mechanisms that contain joints
or actuators with more than a single translational or rotational
degree of freedom (joints other than of revolute or prismatic
type), may require additional cuts.

In our IK formulation, we have not explicitly treated all
types of kinematic singularities. While we regularize all types
of singularities in our IK formulation with the help of our
regularizers, we cannot guarantee that the motion is feasible
on the physical robot if singularities other than the velocity
type we handle, are present in the workspace. For example,
while we regularize velocities, we do not currently limit
accelerations near singularities. An explicit treatment of all
types of kinematic singularities is an exciting future direction.
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