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Fig. 1. Robot Motion Diffusion Model (RobotMDM) generates motions that are physics-aware and respect character limits. Our method enables the seamless
integration of kinematic motion generators with physics-based character control and can be deployed on robots. The example shows a robot performing the
prompt "a person who performed a right-handed uppercut."

Recent advancements in generative motion models have achieved remark-
able results, enabling the synthesis of lifelike human motions from textual
descriptions. These kinematic approaches, while visually appealing, often
produce motions that fail to adhere to physical constraints, resulting in arti-
facts that impede real-world deployment. To address this issue, we introduce
a novel method that integrates kinematic generative models with physics-
based character control. Our approach begins by training a reward surrogate
to predict the performance of the downstream non-differentiable control
task, offering an efficient and differentiable loss function. This reward model
is then employed to fine-tune a baseline generative model, ensuring that
the generated motions are not only diverse but also physically plausible
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for real-world scenarios. The outcome of our processing is the Robot Mo-
tion Diffusion Model (RobotMDM), a text-conditioned kinematic diffusion
model that interfaces with a reinforcement learning-based tracking con-
troller. We demonstrate the effectiveness of this method on a challenging
humanoid robot, confirming its practical utility and robustness in dynamic
environments.

CCS Concepts: • Computing methodologies→ Reinforcement learn-
ing; Learning from demonstrations; Physical simulation; Animation; •
Computer systems organization→ Robotics.

Additional Key Words and Phrases: physics-based characters, robotics, mo-
tion synthesis, motion control, reinforcement learning, animation
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1 Introduction
The automated generation of realistic motions based on high-level
user input is a highly relevant task in physics-based character anima-
tion and robotics. Traditionally, computer animation has emphasized
kinematic-based approaches, which are well-suited for animated
film and video games where visual storytelling takes precedence.
Recent advances in generative models have demonstrated the ability
to synthesize diverse and visually appealing motions when trained
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on large datasets [Tevet et al. 2023]. However, these kinematic-based
generated motions do not strictly satisfy the constraints of a physics-
based environment. As a result, the motions often contain artifacts
such as floating, foot sliding, self-collisions, violations of joint limits,
and dynamic imbalance, making it challenging to deploy these mod-
els in the real world. Although robust motion tracking controllers
exist [Peng et al. 2018; Wang et al. 2020], the resulting motion is
inherently limited by the quality of the provided target motion. We
therefore identify the need to align the output of kinematic gener-
ative models with the downstream task of tracking these motions
with a physics-based or robotic character.

Evaluating the performance of a controlled character on gener-
ated motions requires long-horizon simulations, which are compu-
tationally expensive and non-differentiable. Even if a differentiable
simulation is available, the highly non-linear nature of the articu-
lated rigid body system and the contact dynamics results in poorly
behaved gradients [Hämäläinen et al. 2020; Suh et al. 2022]. Drawing
inspiration from Reinforcement Learning from Human Feedback
(RLHF) [Christiano et al. 2017], we propose to train a reward sur-
rogate that predicts the expected performance of the downstream
task. This provides a differentiable and computationally efficient
loss function to fine-tune the generative model. During deployment,
we interface the fine-tuned generative kinematic model with the
existing tracking controller.

This processing contrasts the direct training of a generative con-
troller [Juravsky et al. 2022], which typically results in a controller
with a latent space that can be sampled. However, since these con-
trollers are trained with Reinforcement Learning (RL), they are
typically constrained to shallow Multilayer Perceptrons (MLPs) and
do not scale well to large datasets. By decoupling the problem of
generating motion from tracking motion, we can utilize more ad-
vanced networks and specialized training strategies. This approach,
which combines strong kinematic motion generators with imitation-
driven physics-based controllers, directly scales to larger datasets.
In this work, we build on a text-conditioned diffusion-based ap-
proach [Tevet et al. 2023], although our fine-tuning strategy is ap-
plicable to generative models in general.
Succinctly, our contributions include:

• A fine-tuning method for generative kinematic motion mod-
els that uses a reward surrogate, offering a computationally
efficient, differentiable estimate of the downstream task.
• A demonstration of RobotMDM, a text-conditioned kinematic
diffusion model that interfaces with an RL-based tracking
controller, deployed on a real-world robot.

2 Related Work
Kinematic Motion Synthesis. Motion generation has been a piv-

otal area of research within computer graphics, primarily focusing
on synthesizing realistic and context-aware motion for animated
characters. The underlying goal of motion synthesis is to learn a
controllable latent manifold from which natural motions can be
drawn. In recent years, many neural architectures and different mo-
tion representations have been investigated [Chandran et al. 2022;
Harvey et al. 2020; Holden et al. 2017, 2016, 2015; Lee et al. 2018;
Ling et al. 2020; Rempe et al. 2021; Starke et al. 2022, 2019, 2020].

This branch of work has been primarily used in animated charac-
ter control, where the user provides simple control signals such as
walking direction and velocity.

With the increased availability of unified large-scale motion cap-
ture datasets, such as AMASS [Mahmood et al. 2019], and compre-
hensive text and action annotations [Guo et al. 2022, 2020; Plappert
et al. 2016; Punnakkal et al. 2021], progress has been made in gener-
ating expressive and diverse motions from more complex control
signals. Guo et al. [2022] use an autoencoder combined with a re-
current neural network and text embeddings to generate motion
sequences. In transformer-based extensions, a motion encoder and a
text encoder are either trained jointly [Petrovich et al. 2022], or the
motion latent space is aligned with a pre-trained language-image
model such as CLIP [Radford et al. 2021]. This alignment exploits
the rich semantic space of languages, enabling even the translation
of cultural references into motions [Tevet et al. 2022]. More recently,
T2M-GPT [Zhang et al. 2023] and MotionGPT [Jiang et al. 2024]
formulate text-to-motion as a translation problem.
Diffusion models [Ho et al. 2020] have also been successfully

adapted to the motion domain [Chen et al. 2023; Tevet et al. 2023;
Zhang et al. 2024]. Beyond producing remarkably high-quality mo-
tion, these models inherit several key properties of diffusion models,
such as supporting many-to-many generation and motion editing.
Much research has leveragedMotion DiffusionModels (MDM [Tevet
et al. 2023]) as foundational frameworks for motion synthesis. Prior-
MDM [Shafir et al. 2023] fine-tunes MDM to control the position of
end effectors. Similarly, GMD [Karunratanakul et al. 2023] predicts
a trajectory based on the given text prompt, which then guides
the diffusion process. OmniControl [Xie et al. 2024] enables dense
spatial control over any joints of the character. Extending this frame-
work, DNO [Karunratanakul et al. 2024] introduces an optimization
process where a differentiable objective is defined and used to op-
timize the input noise so that the resulting motion minimizes the
objective. Although highly effective, this method depends on the
differentiability of the objective. PhysDiff [Yuan et al. 2023] utilizes
a pre-trained MDM and projects the motion onto a physically plau-
sible state using a tracking controller and simulation. However, the
evaluation of multiple simulations at runtime makes the method
computationally expensive. Furthermore, the used control policy
can apply non-physical residual forces to the character to preserve
the semantic meaning of complex motions, aiming to remove vi-
sual artifacts such as ground penetration and floating. In contrast,
we aim at incorporating physical understanding directly into the
sampling process of MDM, and generate motions that are feasible
without artificial external forces.

Physics-Based Character Control. Breakthroughs in deep reinforce-
ment learning [Sutton and Barto 2018] have led to impressive imi-
tation results that capture a single motion [Peng et al. 2018], or a
handful of similar motions [Bergamin et al. 2019; Park et al. 2019;
Wang et al. 2020], with small policy networks. To imitate large-
scale and versatile motion datasets, additional mechanisms to sta-
bilize the training process are required. A common approach uses
a pool of expert policies, where each policy is responsible for a
skill class [Won et al. 2020] or learns to deal with progressively
more difficult motions [Luo et al. 2023]. Alternatively, pre-trained
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motion embeddings [Serifi et al. 2024] may provide an additional
information source during imitation.

Besides imitation, the field has also studied latent spaces for gen-
erative tasks. One goal is to reuse imitation policies in high-level
tasks, where an additional policy learns to navigate the latent space
so that the generated motion reaches a goal. This latent space is
either learned jointly with the imitation objective [Dou et al. 2023;
Feng et al. 2023; Gehring et al. 2023; Peng et al. 2022; Tessler et al.
2023; Won et al. 2022; Yao et al. 2022; Zhu et al. 2023], or is exploited
in a post-processing step [Luo et al. 2024; Merel et al. 2018]. To gen-
erate motions from text, Juravsky et al. [2022] propose to align the
motion latent space with the latent space of a text encoder, similar
to the kinematic counterparts [Tevet et al. 2022]. Albeit promising,
the combined learning of policy and text conditioning suffers from
the sample inefficiency of reinforcement learning, which restricts
scalability to datasets of a few minutes and limits versatility. More
recently, high-level neural networks based on transformers [Yao
et al. 2024] and diffusion models [Ren et al. 2023] have been trained
to navigate the pre-trained latent space of low-level policies. De-
spite their ability to model complex language-to-motion relations,
current methods lack an understanding and notion of feasibility,
resulting in invalid states or unnatural transitions.

Marginalized Critics. Marginalized critics, which predict the ex-
pected return of an RL agent based solely on context rather than
both context and current state, have been utilized to shape a train-
ing curriculum that oversamples underperforming scenarios [Won
and Lee 2019; Xie et al. 2020]. In this work, we demonstrate that
this critic formulation can also be applied outside the context of
RL, serving as a loss function in a second learning problem. By
leveraging the critic as a surrogate for the physical feasibility of
generated motions, our method yields motion generators that better
align with the physical character and control requirements.

3 Method
We assume the availability of a control policy, conditioned on a
reference motion, and a generative model that produces kinematic
motions. In this work, we train a VMP policy [Serifi et al. 2024],
and a MDM generative model [Tevet et al. 2023] on our dataset.
From there, our method consists of three parts (see Fig. 2): training a
reward surrogate for the motion tracking task, aligning a generative
model with this reward, and sequencing the generative model with
the tracking controller during deployment.

Motion Representation. Motions of duration 𝑛 are encoded with
a 𝑛 × (7 + 2 𝑗) matrix 𝑀 , where 𝑗 presents the number of joints.
This matrix includes measurements for root height, root linear ve-
locity (𝑥𝑦-plane), root angular velocity (about 𝑧-axis), root pose (3-
dimensional), and joint positions and velocities. This representation
is consistently applied across all stages of the method. Furthermore,
motion data is normalized to the local heading frame of the charac-
ter, where the 𝑥-axis aligns with the heading direction and the 𝑧-axis
points upward. This normalization strategy decouples each frame
from its absolute position and orientation in global coordinates,
thereby facilitating a more efficient utilization of the data resources.
Matrix𝑚𝑡 is a subset of rows frommatrix𝑀 corresponding to either

a single frame or motion window. If a motion is shorter, we pad the
matrix with zero columns, restricting evaluations of loss or reward
functions to the number of non-zero columns.

3.1 Critic Training
Conditional Reinforcement Learning. The goal in physics-based

motion tracking is to translate kinematic motion inputs to physical
actions in an environment. Using reinforcement learning [Sutton
and Barto 2018], a policy is trained through interaction with a simu-
lated environment, maximizing the expected return over a period of
time. The policy is a probability function, 𝜋 (𝑎𝑡 |𝑠𝑡 ,𝑚𝑡 ), where 𝑎𝑡 is
the action taken, 𝑠𝑡 is the observed state at time 𝑡 , and𝑚𝑡 represents
the kinematic motion input to the policy1. The environment reacts
to the action by transitioning to the next state, 𝑠𝑡+1, and providing
a scalar reward 𝑟𝑡 = 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1,𝑚𝑡 ). The reward reflects how ac-
curately the resulting physical motion tracks the kinematic input.
See [Serifi et al. 2024] for a detailed specification of the reward and
termination conditions.

During training, we initialize an episode by randomly choosing a
motion and a starting frame from the dataset. We then shift by one
frame within the same motion clip to retrieve the next reference.
We continue this process until we reach the end of a clip, randomly
jumping to a new clip if the episode has not terminated yet. Addi-
tionally, we use domain randomization to increase the robustness
of the policy and randomize rigid body masses and friction coeffi-
cients to avoid overfitting to a single set of simulation parameters,
introducing random disturbance forces also. To further reduce the
sim-to-real gap, we add actuator models [Grandia et al. 2024] to the
simulator.

Critic Training. After training, the parameters of the actor are
frozen and the same environment is used to learn a function that
predicts the performance of the actor given a motion reference.
Concretely, we aim to estimate the expected discounted cumulative
reward given the current motion reference,

𝑣 (𝑚) = E 𝑠0:∞
𝑎0:∞
𝑚1:∞

[ ∞∑︁
𝑡=0

𝛾𝑡𝑟𝑡

�����𝑚0 =𝑚, 𝜋

]
, (1)

where the expectation is evaluated over state-action trajectories
and future motion references, and 𝛾 ∈ [0, 1] is the discount factor.
Variable 𝑟𝑡 is the reward at time 𝑡 , for which we choose the same
reward as during RL. In principle, the reward function could be
altered at this stage. The estimate (1) is closely related to the value
function used during RL,

𝑣RL (𝑠,𝑚) = E 𝑠1:∞
𝑎0:∞
𝑚1:∞

[ ∞∑︁
𝑡=0

𝛾𝑡𝑟𝑡

�����𝑠0 = 𝑠,𝑚0 =𝑚, 𝜋

]
. (2)

However, the RL value function has access to the current state of the
character while 𝑣 (𝑚) does not. Our reward surrogate can, therefore,
be understood as the averaged value function over the distribution
of states, thus establishing a differentiable link between kinematic
motion and expected reward. Due to this similarity, we refer to the
reward surrogate as critic.
1The policy used in this work uses a latent representation of the provided reference
motion. This mapping from motion to latent space is considered part of the policy
𝜋 (𝑎𝑡 |𝑠𝑡 ,𝑚𝑡 ) itself.
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Fig. 2. Overview. RobotMDM leverages a pre-trained imitation policy (Actor) and a pre-trained Motion Diffusion Model (MDM) in a two-stage process. In
the first stage (Critic Training), a Critic is trained using motions from the dataset to evaluate the Actor’s performance, creating a differentiable surrogate for
expected future rewards conditioned on motion input, and linking kinematic inputs to physical feasibility. In the second stage (Physical Alignment), the
learned Critic is used to fine-tune the MDM, aligning it with the character’s limits and ensuring physical feasibility. The final result is RobotMDM, a method
capable of generating physics-aware motions, suitable for deployment on real-world systems (Deployment).

Observing that the proposed critic is an RL critic with partial ob-
servations, we apply standard value function estimation algorithms
to train a network, 𝑣𝜃 (𝑚), that directly approximates Eq. (1). We
use the approach from PPO [Schulman et al. 2017], which estimates
a value function target using truncated Generalized Advantage Esti-
mation (GAE, [Schulman et al. 2016]), corresponding to a truncated
TD(𝜆) estimate [Sutton and Barto 2018]. Given a finite roll-out of
the current policy of length 𝑇 , and a current set of parameters 𝜃 , an
updated value function estimate, 𝑣𝑡 , is computed as

𝑣𝑡 = 𝑣𝜃𝑡 +
𝑇−1∑︁
𝑡 ′=𝑡

(𝛾𝜆) (𝑡
′−𝑡 ) 𝛿𝑡 ′ , (3)

where 𝛿𝑡 ′ is the TD error at time 𝑡 ′, given by

𝛿𝑡 = 𝑟𝑡 + 𝛾𝑣𝜃𝑡+1 − 𝑣
𝜃
𝑡 . (4)

With the collected batch, the critic’s parameters are updated accord-
ing to a square loss function

min
𝜃

∑︁
∥𝑣𝑡 − 𝑣𝜃𝑡 ∥22 . (5)

The training process is outlined in Alg. 1.

3.2 Physics-Aligned Generative Model
Training the generative model consists of a kinematic pre-training
step, followed by fine-tuning. Before discussing our fine-tuning,
we briefly recap the training of the generative model, which is a
text-conditioned diffusion model in our case.

Denoising Diffusion Probabilistic Model. The diffusion process
begins with a clean motion sequence, denoted as𝑀0, and progres-
sively adds noise, resulting in a noisy sequence 𝑀𝑑 at each step
𝑑 . This process can be mathematically expressed as 𝑞(𝑀𝑑 |𝑀0) =
N(𝑀𝑑 ;

√
𝛼𝑑𝑀0, (1 − 𝛼𝑑 )𝐼 ), with 𝛼𝑑 representing a noise schedule

that determines the intensity of the added noise [Ho et al. 2020].
Essentially, the diffusion process creates a process from clean mo-
tion to increasingly distorted motion. The objective of the motion
diffusion model is to learn the reverse process: how to denoise a

Algorithm 1: Critic Training
Input: 𝜋 : control policy; D: set of target motions𝑚

1 𝑣𝜃 ← init MLP with 𝜃 parameters
2 B ← ∅ init replay buffer
/* collecting trajectories */

3 while B not full do
4 𝑚 ← sample motion window from D
5 𝑠0 ← set character to random pose
6 𝜏 ← ∅ init empty trajectory
7 for 𝑡 = 0, . . . , 𝑇 do
8 simulate one step using 𝑎𝑡 ∼ 𝜋 (𝑎𝑡 |𝑠𝑡 ,𝑚𝑡 )
9 𝑟𝑡 ← compute reward

10 record (𝑚𝑡 , 𝑟𝑡 ) in 𝜏
11 end
12 store 𝜏 in B
13 end

/* critic updates */

14 for each 𝜏 in B do ⊲ batch processing
15 for each (𝑚𝑡 , 𝑟𝑡 )𝑇𝑡=0 in 𝜏 do
16 𝑣𝑡 ← compute value function estimate ⊲ (3), (4)
17 end

18 𝜃 ← 𝜃 − 𝜂𝑐∇𝜃
(∑𝑇 −1

𝑡=0 (𝑣𝑡 − 𝑣𝜃𝑡 (𝑚𝑡 ) )2
)

⊲ (5)

19 end

sequence and gradually reconstruct the clean motion from noisy
states. This is done by training the model to predict the clean motion
𝑀0 using a parameterized function 𝑝𝜙 (𝑀𝑑 , 𝑑, 𝑐),

L𝑀𝐷𝑀 = ∥𝑀0 − 𝑝𝜙 (𝑀𝑑 , 𝑑, 𝑐)∥22, (6)

where 𝑐 represents additional conditions like text prompts or other
contextual information. By providing these conditions, the model
can generate specific types of motions. This loss is minimized on
randomly sampled motion-context pairs and random diffusion steps
𝑑 . During inference, a random noise motion is sampled from a
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standard Gaussian distribution𝑀𝐷 ∼ N(0, 𝐼 ), and 𝐷 diffusion steps
are applied to generate a clean motion𝑀0. Note that this process is
not aware of physical properties that would be needed for true-to-
life motion simulation.

RobotMDM. Given a pre-trained motion diffusion model and a
critic, we propose to use the critic as an additional loss to fine-
tune the diffusion model. We therefore generate a motion 𝑀 =

𝑝𝜙 (𝑀𝑑 , 𝑑, 𝑐) and use the critic, with frozen parameters, to evaluate
the expected performance for that motion. We maintain the stan-
dard MDM loss functions to ensure the model generates motions
according to the data distribution and textual conditioning. How-
ever, we now also use the negative sum of critic values to indicate
feasibility

L𝑅𝑜𝑏𝑜𝑡𝑀𝐷𝑀 = L𝑀𝐷𝑀 − 𝛽
|𝑀 |∑︁
𝑡=0

𝑣𝜃 (𝑚𝑡 ), (7)

where we sum over all the motion windows𝑚𝑡 contained in the
generated motion. With this loss function, the MDM is trained to
shape motions into more realistic examples without losing contex-
tual accuracy, achieving higher critic values, which indicate that
the policy can track the motion more accurately.

4 Evaluation and Results
Character. We evaluate our method on a bipedal robot with 20

degrees of freedom. The robot stands 0.84m tall and has a mass
of 16.2 kg. In simulation, we operate on a torque-controlled sys-
tem [Grandia et al. 2024]; the policy outputs actuator positions that
serve as inputs for the proportional-derivative (PD) controllers at
each joint. We built a physical replication of the robot where the
two legs, each with 5 DoFs, are equipped with Unitree A1 actuators,
while its neck and arms use Dynamixel XH540-V150-R actuators.
We estimate the robot’s state by using input from an onboard IMU
and a motion capture setup.

Data. In our experiments, we use the textually-annotated AMASS
subset [Mahmood et al. 2019] of the HumanML3D dataset [Guo et al.
2022]. This dataset is a collection of human mocap data. To retarget
the motions to our robotic character, we use the inverse kinematic
formulation by Schumacher et al. [2021]. After removing motions
shorter than two seconds and mirroring them, we end up with 27112
motions annotated with 70958 textual descriptions and a total length
of ∼55 h. We use the same train-test split as HumanML3D. Note
that after retargeting, the dataset necessarily introduces artifacts
due to the mismatch in topology and degrees of freedom between
the SMPL body model [Loper et al. 2015] and our character.

Training Details. Tab. 1 provides a summary of the most impor-
tant training parameters used for critic training and our physical
alignment. For the pre-trained actor, we use parameters reported
in [Serifi et al. 2024]. During critic training, we use a fixed learning
rate 𝜂𝑐 and reduce 𝛾 to 0.9 to focus on short- and medium-term
rewards. The critic is a small MLP with 3 hidden layers of size 256.
As the generative backbone, we train MDM [Tevet et al. 2023] on the
retargeted dataset for 3 million steps. To stabilize the training, we
apply Exponential Moving Averaging (EMA, [Kingma and Ba 2014])
over the model weights, following the implementation of Nichol et

Table 1. Training Parameters.

Critic Training Physical Alignment
Parameter Value Parameter Value

Batch size 8192 × 32 Batch size 256
Layers 3 × 256 EMA rate 0.9999
𝜂𝑐 3 · 10−4 𝜂𝑓 0.003
𝛾 0.9 Fine-tuning steps 400k
𝜆 0.95 𝛽 0.001

𝐷 50

al. [2021]. The original MDM used 1000 diffusion steps (referred to
as MDM-1K). With EMA, comparable results can be achieved in just
50 diffusion steps (referred to as MDM) [Karunratanakul et al. 2024].
We use a single EMA rate of 0.9999. The model parameters and loss
function remain as reported in [Tevet et al. 2023]. RobotMDM is
fine-tuned for an additional 400k steps, equivalent to 12 hours of
training, using objective (7) and learning rate 𝜂𝑓 .

4.1 Kinematic Motion Generation
We first evaluate the motion generation capability of the aligned
RobotMDM, compared to the baseline MDM and PhysDiff. The re-
sults are summarized in Tab. 2, where the first row evaluates the
performance metrics on the dataset itself. For PhysDiff, we per-
form a single projection step. We note that in the original PhysDiff
method, the controller used during projection applies external forces
to the root of the character. Given the goal of deploying the mo-
tion on a real robot, we use a controller without external forces
in our evaluation of PhysDiff. To evaluate the motion quality and
diversity, different metrics were proposed in previous work [Guo
et al. 2022, 2020]: the Frèchet Inception Distance (FID [Heusel et al.
2017]) measures the disparity between the feature distribution of the
dataset and generated motions by utilizing an inception network. R-
Precision compares the ground truth text description and 31 random
text descriptions by measuring the Euclidean distance between the
text embedding and generated motion embedding. Top-3 accuracy
is reported.MultiModal dist. evaluates mode coverage by measuring
the Euclidean distance between motion features and text features.
To evaluate Diversity, we compare the variance between gener-
ated motions and original motions and rank the methods based on
closeness to the dataset variance. The MultiModality measures the
diversity (variance) of generated motions, conditioned on the same
text prompt. Finally, we propose the Realism score, which reports the
accumulated value estimated by the critic network,

∑ |𝑀 |
𝑡=0 𝑣

𝜃 (𝑚𝑡 ),
which can be taken to indicate the feasibility of the motion.

RobotMDM significantly improves the Realism score while pre-
serving similar levels of performance across other metrics compared
to MDM. Note that the dataset itself has a much lower Realism score,
primarily due to noise and retargeting artifacts arising from the dis-
crepancy between our character and the human skeleton. Compared
to the dataset, motions generated by MDM are smoother and have
fewer artifacts, which consequently leads to higher Realism scores.
Although PhysDiff enhances the Realism of generated motions, the
use of a projection using the simulated control policy results in
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Table 2. Kinematic Motion Generation. Comparative evaluation of various kinematic motion generation methods across multiple metrics for quality,
diversity, and feasibility. Best and second best (excluding the dataset itself). ± indicates the 95% confidence interval.

Method R-Precision, top 3 ↑ FID ↓ MultiModal Dist ↓ Diversity→ Multi-modality ↑ Realism ↑

Dataset 0.696±.003 0.002±.000 3.799±.014 8.958±.102 - 6.774±.002

MDM-1K 0.675±.013 0.688±.090 3.840±.039 8.952±.060 2.355±.148 8.392±.036
MDM 0.680±.008 0.415±.045 3.831±.028 9.074±.135 2.068±.067 8.730±.018
PhysDiff (1-step) 0.482±.007 10.401±.089 5.500±.025 6.546±.037 1.890±.113 8.951±.034

RobotMDM (ours) 0.684±.007 0.472±.023 3.835±.020 9.170±.064 2.087±.101 9.562±.017

↑: higher is better; ↓: lower is better;→: closer to dataset is better.

RobotMDM
MDM

(a) Realism Distribution.

RobotMDM
MDM

(b) CCDF.

Fig. 3. Comparison of MDM and RobotMDM methods for 10000 randomly-
generated motions. (a) Distribution of Realism scores. RobotMDM shows
a shift towards higher values, indicating improvements in feasibility. (b)
Complementary Cumulative Distribution Function of the motion Realism
values shown in (a). RobotMDM motions demonstrate significantly higher
values. Anecdotally, values above 9.0 correspond to well-tracked motions.

a decreased performance in other metrics. While PhysDiff effec-
tively eliminates ground penetrations, it heavily depends on the
controller’s tracking accuracy. We hypothesize that the absence of
external helper forces in our control policy necessitates large projec-
tion steps and reduces the effectiveness of this projection strategy,
ultimately leading to less versatility. Rather than projecting the mo-
tions, RobotMDM learns a strategy to circumvent infeasible motions,
thereby sustaining quality and diversity. Additionally, in contrast to
PhysDiff, RobotMDM does not add any extra computational over-
head to MDM during motion generation.

4.2 Physical Alignment
In the following, we compare generated motions, with a focus on
feasibility. The dataset includes motions involving object interac-
tions, such as sitting on a chair, which are generally not feasible
without the presence of the object. Additionally, the dataset was
collected from human subjects, and kinematically retargeting these
motions to our character does not guarantee that the character can
perform them. Therefore, simply learning the motion distribution
from the dataset is insufficient for achieving physical realism.

Fig. 4 shows two examples where RobotMDM refines the motions
to enhance realism. The first example depicts a leg kick where the
MDM-generated motion is imbalanced and features an excessively
strong high kick. Given the character’s inability to capture such
dynamic motions, our method moderates the strength and stabilizes
themovement, making it more realistic. The second example in Fig. 4
demonstrates a motion involving sitting. In MDM, the character

M
D
M

Ro
bo

tM
D
M

prompt: subject kicks left leg forward
M
D
M

Ro
bo

tM
D
M

prompt: a worker sits at a circuit board.

Fig. 4. Realistic Motion Generation. Aligning the motion diffusion model
with physical knowledge results in more realistic motions within the char-
acter’s limits while preserving the context. This results in a less extreme
kick where the character also remains more balanced, or a sitting motion
that is feasible in the absence of a chair.

appears to sit in mid-air, as similar motions are present in the dataset.
Our method recognizes the infeasibility of this action and adjusts
accordingly, resulting in a version where the character squats down
instead of leaning back.
Another issue, resulting from the retargeting process, is that

the dataset contains motions with self-collisions. MDM therefore
produces motions where body parts intersect. Such intersections
lead to a lower reward, as the policy will not be able to track them
accurately. Consequently, the fine-tuned RobotMDM avoids these
intersections. Fig. 5 visualizes the character’s collision bodies during
a waving motion, where bodies are colored red during collisions
(e.g. when the feet contact the floor). MDM results in a collision
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prompt: a figure raises their right hand in a sweeping motion

Fig. 5. Collision Avoidance. Collisions between bodies results in a lower
reward, because they are not accurately tracked by the policy. The aligned
RobotMDM naturally circumvents collisions.

between the head and arm, whereas RobotMDM successfully avoids
such issues while preserving the expressiveness of the motion.

4.3 Physics-Based Motion Tracking
Next, we assess the tracking performance of the control policy.
A total of 10000 motions, each 10 s long, are generated for each
method based on test prompts, resulting in 30 hours of motion.
We evaluate the performance using 2048 simulation episodes, each
lasting 30 s. During these episodes, the policy attempts to imitate
the target motions, starting from a randomly selected frame. If the
selected motion ends or the character is terminated, a new motion
is sampled. We summarize tracking performance results in Tab. 3.
Poses generated by RobotMDM are tracked with greater accuracy,
particularly the lower body pose. Motions generated by MDM are
more frequently infeasible, often featuring overly expressive leg
movements. Additionally, root rotation errors are nearly halved as
the motions created by RobotMDM are more balanced, requiring
smaller corrections to the root pose. Furthermore, both the linear
and angular velocities are more closely aligned with what is feasible
on the robot, enhancing the overall realism and functionality of the
generated motions. Figs. 1 and 7 show the tracking of expressive
motions on the real robot, and additional results are provided in the
supplementary video.

The ability to generate motions can also be leveraged to enhance
the motion tracking policy. While the original tracking policy was
trained on the retargeted dataset, we retrain the policy based on
the generated motions from MDM and RobotMDM, resulting in a
tailored tracking policy for each motion generator. We find that even
after specializing the policy on the motions generated by MDM, the
generated motions remain hard to execute stably, confirming that
the motions are indeed infeasible. Fig. 6 presents an example of the
post-training performance: The character performs a lifting motion.
RobotMDM-generated motions for this prompt are feasible, while

Table 3. Motion Tracking. Evaluation of tracking performance across
linear and angular root velocity, root rotation, and upper and lower body
Degrees of Freedom (DoFs) tracking, measured over 2048 simulations of
30-second references from motions generated by MDM and RobotMDM.

Tracking Error
lin. vel. ang. vel. root rot. upper DoFs lower DoFs

Input [m/s] [rad/s] [◦] [◦] [◦]

MDM 4.90 0.29 4.13 10.88 16.11
RobotMDM 3.43 0.23 2.34 9.36 11.44

M
D
M

Ro
bo

tM
D
M

prompt: the person lifts a dumbbell over his head.

Fig. 6. Robot Control. MDM motions are difficult to track on a real robot
system—the lack of balance and non-physicality lead to poor target match-
ing. The same prompt for RobotMDM yields better robot motions.

Ro
bo

tM
D
M

Ro
bo

t

prompt: a person sneakily crouches while moving laterally.

Fig. 7. Robot Precision. The generated motions can be accurately tracked
on a real-world robot.

those from MDM cause the robot to lose balance. See the supple-
mentary video for similar results. The clear differences between the
two types of generated motions underscore the potential benefits of
iteratively improving both the control policy and the motion gen-
erator. By enhancing these components in tandem, we can further
boost the precision and reliability of the robot’s performance.

5 Conclusion
In this work, we combine kinematic motion generation with physics-
based character control. Our method aligns a motion diffusionmodel
with the physical constraints of the character without compromising
versatility and diversity, and can be deployed on real-world robots.
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Limitations. While the generated motions align more closely with
the desired objectives, there is no hard constraint on motion feasi-
bility. Prompts that significantly deviate from what the character
can realistically do might require substantial adjustment of the mo-
tion to become feasible, leading to a conflict with the original text
prompt. As shown in the video, when prompted to make the robot
swim, RobotMDM struggles to completely resolve this conflict. We
can, therefore, not guarantee its reliability in performance-critical
environments, since there remains a risk that the model generates
motions that violate constraints or are infeasible. Finally, despite
significant advancements in the past year, the need for a character-
specific dataset, often retargeted from human data, does not cover
the full expressiveness that robotic hardware could support. We
believe that further bridging the gap between kinematic and physics-
based approaches through large-scale synthetic datasets generated
from physics-aware motion generators will ultimately lead to en-
hanced policies and robot capabilities.
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