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Fig. 1: We propose a reinforcement learning technique that balances user-guided stylized pose objectives and damage-
minimizing soft falling objectives for bipedal and other legged robots.

Abstract— Despite recent advances in robust locomotion,
bipedal robots operating in the real world remain at risk of
falling. While most research focuses on preventing such events,
we instead concentrate on the phenomenon of falling itself.
Specifically, we aim to reduce physical damage to the robot
while providing users with control over a robot’s end pose.
To this end, we propose a robot agnostic reward function that
balances the achievement of a desired end pose with impact
minimization and the protection of critical robot parts during
reinforcement learning. To make the policy robust to a broad
range of initial falling conditions and to enable the specification
of an arbitrary and unseen end pose at inference time, we
introduce a simulation-based sampling strategy of initial and
end poses. Through simulated and real-world experiments,
our work demonstrates that even bipedal robots can perform
controlled, soft falls.

I. INTRODUCTION
During dynamic motions, legged robots often encounter

underactuated contact states that demand continuous dy-
namic balancing [1]. For bipedal robots, this issue is par-
ticularly pronounced, as they must control a heavy body
on a relatively small area of support. Recent reinforcement
learning–based locomotion controllers have made impressive
progress in robustness [2], [3], yet the risk of falling in
unstructured real-world environments remains substantial.
As robots are pushed closer to their limits, much like for
humans, certain disturbances or conditions will inevitably
cause them to fall. However, unlike humans, robots usually
fall in an uncoordinated and uncontrolled manner, leaving
delicate components unprotected and breaking the illusion
of lifelike motion.

A common approach is to improve controller robustness
by adding domain randomization to policy training [4],
integrating safety-oriented terms into optimization [5] or re-
ward functions [6], or restricting the uncertainty by reducing
the range of capabilities. While such approaches improve
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stability, they do not guarantee fall prevention in practice
and may severely limit a robot’s performance or capabilities.
Rather than preventing a fall at all costs, we believe it is
advantageous to embrace the potential of a fall, providing
user control of end poses for stylization and ease of recovery.

In this paper, we therefore explore whether the robot
can execute a fall in a controlled and visually appealing
manner. Falling is a challenging problem, as it requires
performing contact-rich maneuvers within a very short time
window and from a wide range of initial states. Moreover, for
falling, multiple competing objectives need to be balanced,
such as reducing impact, protecting critical components, and
achieving desired motion characteristics.

Existing research on robot falling mostly focuses on a
single objective or a controlled scenario. Once a failure is
detected, common strategies are to freeze the actuators with
high gains [7] or achieve a compliant reaction using low
gains. However, both approaches offer limited controllability
over the resulting motion and suffer from high impact. More
involved solutions often rely on hand-crafted fall strategies,
such as executing predefined falling motions [8] or tracking
predefined contact sequences [9]. This idea has recently
been broadened to adaptive contact sequences, but remains
restricted to a single falling direction [10], [11] or requires
manual considerations tailored to specific fall scenarios, such
as falling forwards or backwards [12].

In contrast, our method not only reduces overall impact
forces but also provides fine-grained user control, through
the specification of critical components to protect and desired
end poses for the robot to reach. This can be used for artistic
control, as shown here, but could also serve as a starting
pose for a recovery policy. We propose a reinforcement
learning (RL) solution that offers adjustable trade-offs be-
tween damage reduction and pose objectives. To generalize
across a wide range of user-specified end poses, we propose
a physics-informed sampling strategy that comprehensively
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covers the distribution of initial and final states. Importantly,
by leveraging reinforcement learning, our approach supports
a wide variety of falling scenarios.

In our experiments, we compare our method quantitatively
with standard falling strategies, showing that our approach
results in softer falls. Through an ablation study in simu-
lation, we demonstrate how our proposed method leads to
controlled falling while adhering to landing in desired poses,
with a user-defined trade-off between the two. In real-world
experiments, we qualitatively demonstrate that our policies
lead to falls without damage. To the best of our knowledge,
this is the first general approach that demonstrates user-
controlled falling of a bipedal robot in the real world. While
we focus our evaluation on bipedal systems due to their
inherent instability, our modeling is agnostic to the number
of legs.

Succinctly, we contribute:
• A learning-based technique that balances impact mini-

mization with a user-defined end pose, providing artistic
control over a fall and facilitating a successful recovery.

• A sampling strategy of initial and end poses, enabling
the training of a general falling policy that allows a user
to specify an unseen and desired end pose at inference.

• Extensive ablations of our method in simulation and
qualitative evaluation on a bipedal robot, highlighting
the utility of our approach.

II. RELATED WORK

A. Soft Falling

Initial works on bipedal falling rely on hand-crafted strate-
gies and predefined motions. A common approach is to treat
falling as a controlled event that is managed with a sequence
of carefully designed actions. For example, controllers can
trigger specific joint trajectories, such as bending the robot’s
knees and extending its arms to reduce impact forces [12],
[13], or tracking UKEMI-inspired falling motions [8], [9].
Alternatively, the robot can be guided by a predefined contact
sequence [14]. As a complementary strategy, the gains of the
actuators can be softened, making the joints more compliant
to passively absorb impacts [12], [15].

A main limitation of these earlier works is their focus
on relatively slow, locomoting robots and falls occurring
primarily in the sagittal plane. As robots become capable
of more dynamic motions [16], [17], the likelihood of multi-
directional falls with high impact forces increases.

Recent advancements in RL allow for more general,
flexible, and robust methods that require fewer assumptions.
By allowing for adaptive and learned contact sequences,
various individual fall strategies can be unified [10], [11],
and scale beyond the simplification of sagittal plane falls
[18]. There has been more recent focus on quadruped falling
policies [19], [20]. ALMA [20], for example, provides a gen-
eral framework that assigns time-varying damage-reduction
rewards across the different phases of a fall.

We extend upon the related works by leveraging the
strength of RL and propose a general learning framework for

soft falling that covers diverse falling scenarios. Our method
accounts for sensitive robot parts, enabling the policy to
minimize impacts on critical components, without manually
specifying falling motions or contact sequences.

B. Stylized Falling

For applications in human-robot interaction or the en-
tertainment industry, lifelike and stylistic robot motions
become important [4], [21], [22]. In character animation,
motion is typically defined by keyframes, with intermedi-
ate poses generated using various interpolation methods.
Those methods range from simple parametric curves [23]
to sophisticated learning-based interpolation techniques [24].
Keyframes were also explored in RL to sparsely define
a robot’s motion [25]. However, so far, artistic keyframes
have only been applied in controlled settings, and not in
the context of a falling objective. In fact, most works in
simulated character control aim to prevent falling at all costs,
either by introducing non-physical fictitious forces [26],
employing early termination techniques [27], or explicitly
penalizing falling through a reward [16].

We extend the capabilities of a falling policy by combin-
ing soft falling with style guidance, an aspect particularly
relevant for human-oriented applications. Specifically, our
framework enables steering the fall towards stylistic end
poses while reducing the impact forces caused by it.

III. OVERVIEW

Falling motions are challenging as they arise from diverse
and unstable initial states. Our goal is to enable a robot
to perform a controlled fall across such conditions, while
minimizing impact and reaching a user-specified, stylized
end pose. Specifically, a user specifies two inputs: the rela-
tive sensitivity between robot components that are fixed at
training time, and a desired end pose that is specified at
inference time and should be reached by the robot once at
rest, irrespective of the initial falling condition. For example,
even when stumbling backwards, the robot should be able to
achieve an end pose where it lies on the front side of the
pelvis while protecting its head with its arms.

End poses can serve different goals. For instance, artists
can define expressive poses to enable falls with an intended
stylistic effect, turning a perceived failure into a believable
motion. Moreover, end poses can be chosen to serve as
suitable starting poses for recovery policies, facilitating a
seamless transition into a standing pose [28], [29].

Note that this work focuses exclusively on a graceful
falling behavior of a robot; not on deciding whether a fall
should occur.

IV. METHOD

To achieve our goals as outlined above, our method
trains a policy via reinforcement learning, relying on a
reward function that balances impact minimization with pose
objectives (refer to Fig. 2). Before describing our rewards,
sampling strategy, and initialization procedure, we introduce
the domain-specific states, goals, and actions.
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Fig. 2: Method Overview. We leverage reinforcement learn-
ing to train a robust falling policy (right). Our method learns
to balance impact minimization with reaching a desired
end pose through our reward formulation, which considers
user-specified robot part sensitivities. During inference (left),
the policy is guided by a user-specified end pose, while
simultaneously minimizing impact.

A. Reinforcement Learning Setup

Our goal is to determine a sequence of actions at through
a policy π(at|st, gt) that transitions the robot from an initial
state s0 into a final state sT , taking on a user-specified
end pose, with t ∈ [0, T ]. The actions at are joint position
setpoints for proportional-derivative (PD) controllers, and the
proprioceptive state is

st :=
(
θt,vt,ωt, qt, q̇t,at−1,at−2

)
, (1)

where θt is the root orientation, represented with a unit
quaternion, vt and ωt are the root’s linear and angular
velocities, and qt and q̇t are its joint angles and joint angular
velocities.
The time-varying goal

gt :=
(
θ̂t, q̂t

)
(2)

is derived from the user-specified end pose g =
(
θ̂, q̂

)
as

outlined below, where θ̂t is the robot’s target root orientation
and q̂t its target joint configuration.

To make our policy invariant under the robot’s global pose,
we represent the root orientation in states and goals in the
local path frame, and the root’s linear and angular velocities
w.r.t. the root frame. The path frame is defined with the root
at the origin, x- and y-axes in the horizontal plane, and the
x-axis aligned with the root’s facing direction.

Note that we do not vary the end goal but apply the time-
varying transformation from the end pose to path-relative
coordinates. This ensures that the policy has sufficient free-
dom to pursue competing objectives and to reach the desired
final state while minimizing impacts.

During training, we sample initial states s0 and end poses
g as described in Secs. IV-C and IV-D.

TABLE I: Weighted Reward Terms. To penalize contact
forces, we sum up all contact forces that act on a component
c in the force vectors f c

t , then multiply them with the com-
ponent’s sensitivity weight wc. v̇t is the linear acceleration
of the root, and τt and q̈t are joint torques and accelerations.
For end pose tracking of the root orientation, we apply
Rodrigues’ rotation formula to convert unit quaternions to
rotation matrices, measuring differences in yaw rotations
between the simulated and the goal state (ez is the unit vector
along the z-axis).

Name Reward Term Weight

Impact

Contact forces −
∑

comp. c∥wcfc
t ∥2∞ 200

Root acc. −∥v̇t∥22 0.2

End Pose Tracking

Root orientation −u(t)∥R(θt)T ez −R(θ̂t)T ez∥22 20.0
Joint positions −u(t)∥qt − q̂t∥22 1.0

Regularization

Joint torques −∥τt∥22 1.0 · 10−3

Joint acc. −∥q̈t∥22 7.5 · 10−7

Action rate −∥at − at−1∥22 0.1
Action acc. −∥at − 2at−1 + at−2∥22 0.05

Positive Offset

Positive offset 1.0 50

B. Reward Design

The reward function is designed to balance accurate end
pose tracking with soft impact, supplemented by regulariza-
tion and a constant positive offset

rt = rtracking
t + rimpact

t + rregularization
t + roffset. (3)

A detailed breakdown of the weighted reward terms is
provided in Tab. I, where hats ·̂ denote target quantities
derived from g.

To promote soft impacts, we adopt an impact reward
(Tab. I, top) inspired by prior work on quadrupedal
falling [20]. We extend the contact force reward by scal-
ing contact forces of robot components with non-negative
sensitivity weights wc. Root acceleration is also penalized
to discourage abrupt motion, regardless of contact.

The tracking reward rtracking
t (Tab. I, middle) compares the

simulated robot pose to a target end pose and incentivizes
the policy to reach this pose. Specifically, the tracking
reward combines a joint tracking and a global yaw-invariant
orientation term. To encourage the policy to initially focus
on reducing impact forces, before smoothly transitioning to
pose tracking, the tracking reward is modulated with a time-
dependent cubic spline u(t), which interpolates the reward
between 0.0 and 1.0 over the blending duration Tblend:

u(t)=

−2

(
t

Tblend

)3

+3

(
t

Tblend

)2

, 0≤t≤Tblend,

1.0, t>Tblend.

(4)



TABLE II: Initial Robot State Ranges. During training, we
cover a wide range of initial falling conditions by sampling
from the ranges below.

Variable Range

Roll, Pitch [−30, 30] degrees
Linear root velocity [−2.0, 2.0] m s−1

Angular root velocity [−0.5, 0.5] rad s−1

Joint velocities [−0.5, 0.5] rad s−1

The parameter Tblend is empirically determined to balance
impact reduction and tracking performance, and satisfies
Tblend ≤ T . In practice, we find that extending learning
beyond the interpolation time helps the policy come to rest
and maintain the final pose without jitter.

Following prior work [4], [27] for imitation learning,
we add regularization rewards (Tab. I, bottom) to penal-
ize excessive joint torques and encourage smooth actions,
helping to avoid vibrations and unnecessary effort. Finally,
a constant positive reward ensures that the agent observes
positive rewards from the start of training, which facilitates
learning [30].

C. Sampling-Based End Pose Generation

To enable user control over a wide range of end poses at
inference time, we introduce a physics-informed sampling
mechanism to generate a dataset of statically stable and
feasible robot configurations.

We begin by sampling random joint configurations within
feasible limits and discarding all configurations that result in
self-collision between robot components. Next, we sample
the robot’s root orientation by applying first pitch and then
yaw rotations around the robot’s axis, both over the full range
of ±180◦.

To obtain statically stable end poses, each sampled con-
figuration is initialized and dropped from a predefined height
of 0.04m with actuators frozen (high gains with fixed
setpoint), until the robot comes to rest, as visualized in the
supplemental video material.

This procedure, however, can produce a biased distribu-
tion: certain root orientations, such as poses on the robot’s
back, may be overrepresented, while others, like poses on
the side, are underrepresented. To mitigate this bias, we
iteratively sample new poses while discarding those that are
already sufficiently represented, ensuring uniform coverage
across root orientation bins.

We leverage Isaac Sim [31] to perform collision detection
and to let frozen robots settle into statically-stable configura-
tions, enabling GPU-accelerated generation of large batches
of physically-feasible end poses.

D. Robot Initialization

To cover a wide range of possible initial falling states in
which the policy may be activated, we randomize the initial
conditions at the beginning of each episode. We sample a
root orientation together with a joint configuration within
feasible limits, and filter all poses to avoid ground penetration

TABLE III: PPO hyperparameters. The hyperparameters
used to train the falling policy.

Param. Value

Num. iterations 75 000
Batch size (num. envs. × steps) 4096× 24
Num. mini-batches 4
Num. epochs 5
Clip range 0.2
Entropy coefficient 0.0
Discount factor 0.99
GAE discount factor 0.95
Desired KL-divergence 0.01
Max gradient norm 1.0

TABLE IV: Disturbance Forces. We add random forces and
torques to each specified body part, drawn from uniform
distributions with the magnitudes listed below and applied
per dimension. Disturbances are applied for a random “on”
duration, followed by a random “off” duration before the
next application.

Param. Range

Body Hips, Feet, Elbows Pelvis, Head
Force [N] XY [0.0, 5.0] [0.0, 5.0]

Z [0.0, 5.0] [0.0, 5.0]
Torque [Nm] XY [0.0, 0.25] [0.0, 0.25]

Z [0.0, 0.25] [0.0, 0.25]
Duration [s] On [0.25, 2.0] [2.0, 10.0]

Off [1.0, 3.0] [1.0, 3.0]

or self-collisions. Since our method is invariant to the global
yaw angle, only the pitch and roll are varied, sampled in
pitch–roll order. To further increase variability and to mimic
the effects of external perturbations and unstable (i.e., falling)
starting conditions, we also assign initial velocities to both
the joints and the root. The corresponding parameter ranges
are summarized in Tab. II.

V. EXPERIMENTS AND RESULTS

We first outline implementation (Sec. V-A) and experi-
mental details (Sec. V-B). Our evaluations are then organized
into four parts. First, we compare our method against default
falling strategies (Sec. V-C). Next, we perform extensive
ablations of our approach that highlight the effectiveness of
our reward formulation and the sampling-based end pose
generation (Sec. V-D). We then showcase how the robot
part sensitivity weights affect the resulting impact forces
(Sec. V-E). Finally, we demonstrate the transferability of
our approach from simulation to the real world through
experiments with a bipedal robot (Sec. V-F).

A. Implementation Details

In the following, we provide details on the network archi-
tecture, training durations, and other relevant information to
facilitate reproducibility.

We train the falling policy using PPO [32] within an
asymmetric actor–critic setup [33], with hyperparameters
listed in Tab. III and an adaptive learning rate [34]. To



Fig. 3: Artist-Designed End Poses. Visual examples of the 10 artist-designed end poses used in our experiments.
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Fig. 4: Impact Analysis. Comparison of maximal (left) and mean (right) impact forces across body parts between standard
falling strategies and our method.

mitigate the sim-to-real gap, we add standard Gaussian noise
to the inputs of the actor and small disturbance forces listed
in Tab. IV. In addition to the standard observations, the
critic receives privileged observations consisting of noiseless
quantities, friction parameters, rigid body velocities and
accelerations, and the phase of the episode. Both the policy
and value function are modeled using multi-layer perceptron
(MLP) networks with ELU activations [35], consisting of
three layers with 512 units each. Observations are normalized
using a running mean, following the standard practice in
PPO [32]. Our simulations are performed using the GPU-
accelerated Isaac Sim physics engine [31], running 4096
environment instances in parallel on a single RTX 4090 GPU.
We train our falling policy for 75k iterations (approx. 48 h).

Next, we detail additional aspects of the reward formu-
lation. When resolving contacts, the physics engine can
generate excessively large forces, which is why, during
training only, we clip values above 10 kN to improve nu-
merical stability. To account for varying sensitivity across

robot components, we assign different sensitivity weights.
Previous experiments with our bipedal robot revealed that
most damage occurred at the head, followed by the shoulders
and elbows. To reflect this varying sensitivity, we assign the
following sensitivity weights to the body parts: The pelvis
and legs are weighted 1.0, elbows 2.0, shoulders 3.0, and
head 4.0. In Sec. V-E, we perform an ablation of this
weighting scheme.

B. Experimental Details

1) Data: Our training dataset comprises 24k target end
poses, complemented by a test set of 2k poses, generated
through our sampling-based generation (Sec. IV-C). Addi-
tionally, we employ a set of 10 expressive, artist-designed
poses in various orientations to explore the generality of our
method. These poses were manually created by artists in
Blender [36], respecting the joint limits and avoiding self-
penetration during the process, but ignoring physical con-
straints. The end poses shown in Fig. 3 are visual examples
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Fig. 5: Impact vs. Tracking Ablation. We measure the max
impact force and mean joint tracking error for varying impact
reward weights. Displayed are the mean values over all trials.

of the artist-designed poses in simulation. In Sec. V-D.3, we
analyze the effect of dataset size on policy training.

2) Metrics: We base our evaluation on [18], [20] by
comparing damage criteria across different control strategies.
Unless specified otherwise, we evaluate the metrics over
32768 trials with randomly sampled initial states and unseen
target end poses from the test set. We use the following
metrics throughout our experiments:

• Max Impact Force: The maximum impact force ex-
perienced by the robot during each rollout and across
body parts.

• Mean Impact Force: The maximum of the mean
impact force over all body parts experienced by the
robot during each rollout.

• Mean Root Orientation Error (MROE): The mean
root orientation error is given as the geodesic distance
between the global yaw axis-aligned target end pose
orientation and the robot’s root orientation at the final
time step of an episode.

• Mean Joint Tracking Error (MJE): The mean abso-
lute joint tracking error over all joints at the last timestep
of an episode.

3) Robot: We run experiments on a custom-built bipedal
robot with 20 degrees of freedom (DoF), a total mass of
16.2 kg and a height of 0.84m. Each leg has 5 DoF with Uni-
tree A1 actuators, and the arms and neck are equipped with
Dynamixel XH540-V150-R actuators. Our policy predicts
actuator positions at 50Hz that are passed to proportional-
derivative (PD) controllers at each joint. We estimate the
robot’s state by fusing information from an onboard inertial
measurement unit and motion capture.

C. Comparison with Standard Falling Methods

Following the evaluations in [7], [11], [20], we compare
our method against standard falling strategies commonly
used in practice: applying zero torque, damping the actuators

TABLE V: Sampling-Based End Pose Ablation. We com-
pare two variants of our method, once trained with our
sampling-based end pose generation (generated) and once
trained on artist-designed poses (artistic). We report the mean
and standard deviation of the mean joint position tracking
error (MJE) and the mean root orientation error (MROE).

Test Split Training Data MJE [rad] MROE [rad]

Generated Generated 0.36± 0.10 0.12± 0.12
Artistic 1.03± 0.20 1.05± 0.58

Artistic Generated 0.30± 0.09 0.09± 0.07
Artistic (seen) 0.17± 0.12 0.08± 0.15
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Fig. 6: Dataset Size. Mean joint tracking error and mean
root orientation error for varying dataset sizes.

with low gains (0.1×nominal), and freezing them with high
gains (10×nominal) at their most recent setpoints. As shown
in Fig. 4, our method substantially reduces both the max and
mean impact forces compared to the baselines and exhibits
much lower variance. Furthermore, the falling dynamics with
our method are controlled and predictable. In contrast, freez-
ing the joints makes the robot behave as a single rigid body,
falling in the initial direction, while damping or zero-torque
settings produce interactions between components, resulting
in more complex and less predictable motion. Please refer to
our supplemental video for visual evidence of these insights.
Overall, these results highlight the benefits of our approach
over common existing falling strategies.

D. Ablations

1) Impact vs. Tracking Ablation: In this experiment, we
ablate policies trained with varying weights of the contact
force reward (see Tab. I) and evaluate the resulting maximal
impact forces and mean joint tracking error. We illustrate
the results in Fig. 5. As expected, increasing the contact
force weight reduces impact forces but increases the joint
tracking error. This highlights the inherent trade-off between
minimizing impact and accurately reaching the target end
pose. We found that a contact force weight of 200 provides



TABLE VI: Impact Reduction of Critical Components.
Comparison of the baseline and the policy trained with
increased sensitivity weight on the battery. We report the
mean joint tracking error (MJE) and mean root orientation
error (MROE) as mean with standard deviation, and battery
impact forces as median and 95th percentile, reflecting their
highly non-symmetric statistics.

Policy MJE [rad] MROE [rad] Median/95th % [N]

w/o battery 0.32± 0.10 0.11± 0.11 36.12/3321.75
w/ battery 0.42± 0.11 0.16± 0.14 0.00/810.69

a reasonable balance between these objectives.
2) Sampling-Based End Pose Generation: To evaluate our

sampling-based end pose generation technique (see Sec. IV-
C), we compare our approach trained on sampled end poses
(generated) with a variant trained solely on artist-designed
end poses (artistic). We report results in Tab. V. On the
generated test set, the policy trained on generated end poses
outperforms the variant trained on a few artist-designed end
poses significantly in both mean joint tracking error and
mean root orientation error.

On the other hand, our method trained on generated end
poses achieves slightly higher mean root orientation and joint
tracking errors on the artist-designed test set. Note, however,
that the artist-trained variant has seen these poses during
training. This leads to overfitting as indicated by its high
errors on the generated test dataset. In contrast, our method
generalizes well to unseen poses, even when drawn from a
different data distribution (artistic).

3) Dataset Size: We examine how the number of gener-
ated end poses affects generalization to unseen end poses.
We train multiple variants of our method, each using a
progressively smaller subset of the full training dataset. We
report the mean joint tracking error and mean root orientation
error on our test set of unseen end poses, and illustrate
the results in Fig. 6. We find that the best performance is
achieved with our full dataset, yielding improved joint and
orientation tracking. Dataset size is most critical in low-
data regimes (1%-6% of the total dataset), indicating that
a minimum amount of data is needed for generalization.
Beyond this range, additional data continues to improve
performance; however, the gains become more marginal.

E. Impact Reduction of Critical Components

Our method accounts for the varying sensitivity of dif-
ferent robot components. To evaluate this formulation, we
split the pelvis into the main body and a rear battery pack,
assigning a high sensitivity weight of 5.0 to the battery
and 1.0 to all other components. This simulates a robot
carrying sensitive hardware on its back. We compare a
policy trained with these weights to a policy that has all
sensitivity weights set to 1.0. The results in Tab. VI show
a significant reduction in the 95th percentile, demonstrating
that worst-case impacts can be greatly reduced. A median
of 0.0 indicates that, in most falling scenarios, forces on the

backpack can be fully eliminated. Thus, our method provides
a general framework to balance tracking performance and
impact forces on critical components. We provide qualitative
results of this experiment in our supplemental video.

F. Real-World Experiments

We perform a set of qualitative real-world experiments to
demonstrate the transferability of our method from simula-
tion to the real world using the bipedal robot described in
Sec. V-B). We select 10 artist-designed end poses and vary
the initial conditions by randomly applying external forces
to the robot with a stick. We then record the resulting falling
behavior, with end poses illustrated in Fig. 7 and the entire
falling motions shown in our supplemental video. Notably,
we performed all of our experiments with a single robot,
which remained fully functional throughout the experiments
and showed no noticeable damage. This indicates that our
method enables soft falling behavior that protects the robot’s
most sensitive part, regardless of the falling direction.

VI. DISCUSSION

Our approach shows promising results for bipedal falling,
but has several limitations. Our experiments were all carried
out with the same humanoid robot. While our modeling is
agnostic to the robot morphology, future research could ex-
plore how well our method transfers to different humanoids
or legged robots in general.

For testing purposes, we study falling in an isolated man-
ner and intentionally place the robot in unstable states that
result in falling. A practical, real-world deployment of our
approach would require a mechanism that predicts unstable
states to trigger appropriate falling motions. To anticipate a
fall, simple heuristics, such as detecting invalid state esti-
mates, insufficient battery, or other safety-critical conditions,
could be used. Future work could explore predicting a fall
from the robot’s motion dynamics.

In our approach, the impact weight per robot part must
be defined prior to training. An exciting future avenue is
the exploration of a policy that enables the adjustment of
the policy’s objectives at inference time, similar to multi-
objective RL approaches [37]. This would allow users to,
for example, increase the weight of impacts on components
that are nearing their wear-and-tear limits.

Moreover, in our presented experiments, we pre-selected
the target end poses. An interesting direction for future work
is to automatically determine the most suitable falling pose
based on the robot’s initial state.

Finally, while we focused on stylized and soft falling,
this behavior is tightly coupled with recovery, which has
been explored in recent works [28], [29]. Future work could
investigate how to best combine the training of falling and
recovery policies, taking stylization into consideration in
both policies.

VII. CONCLUSION

Falling remains an inevitable possibility for legged robots,
and in this work, we have shown that a purpose-trained RL



Fig. 7: Real-World Experiments. Qualitative examples of the artist-designed end poses the robot reached after falling.

controller is able to both reduce the impact and severity of
the fall, and also prescribe the pose in which the robot ends
up. We have evaluated our method with both simulated and
real-world experiments.

Falling means to temporarily relinquish control of the
system. However, if the final state of the fall can be
controlled, and damage can be mitigated, this also opens
the potential for deliberately exploiting falls during robot
operation. This could be applicable for stunt robots and
slapstick performances, but could also be exploited in the
future to traverse more extreme terrain.
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bipedal robotic character,” in Robotics: Science and Systems XX, ser.
RSS2024. Robotics: Science and Systems Foundation, Jul. 2024.
[Online]. Available: http://dx.doi.org/10.15607/RSS.2024.XX.103

[5] G. Romualdi, S. Dafarra, G. L’Erario, I. Sorrentino, S. Traversaro,
and D. Pucci, “Online non-linear centroidal mpc for humanoid robot
locomotion with step adjustment,” in 2022 International Conference
on Robotics and Automation (ICRA). IEEE, 2022, pp. 10 412–10 419.

[6] I. Radosavovic, T. Xiao, B. Zhang, T. Darrell, J. Malik, and
K. Sreenath, “Real-world humanoid locomotion with reinforcement
learning,” Science Robotics, vol. 9, no. 89, p. eadi9579, 2024.

[7] C. G. Atkeson, B. P. W. Babu, N. Banerjee, D. Berenson, C. P. Bove,
X. Cui, M. DeDonato, R. Du, S. Feng, P. Franklin, M. Gennert, J. P.
Graff, P. He, A. Jaeger, J. Kim, K. Knoedler, L. Li, C. Liu, X. Long,
T. Padir, F. Polido, G. G. Tighe, and X. Xinjilefu, “No falls, no
resets: Reliable humanoid behavior in the darpa robotics challenge,” in
2015 IEEE-RAS 15th International Conference on Humanoid Robots
(Humanoids), 2015, pp. 623–630.

[8] K. Fujiwara, F. Kanehiro, S. Kajita, K. Kaneko, K. Yokoi, and
H. Hirukawa, “Ukemi: Falling motion control to minimize damage
to biped humanoid robot,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, vol. 3, 2002, pp. 2521–2526.

[9] K. Ogata, K. Terada, and Y. Kuniyoshi, “Falling motion control for
humanoid robots while walking,” in 2007 7th IEEE-RAS International
Conference on Humanoid Robots. IEEE, 2007, pp. 306–311.

[10] S. Ha and C. K. Liu, “Multiple contact planning for minimizing dam-
age of humanoid falls,” in 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2015, pp. 2761–2767.

[11] V. C. Kumar, S. Ha, and C. K. Liu, “Learning a unified control
policy for safe falling,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2017, pp. 3940–3947.

[12] T. Ishida, Y. Kuroki, and T. Takahashi, “Analysis of motions of a
small biped entertainment robot,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 1. IEEE, 2004, pp. 142–147.

[13] S. Wang and K. Hauser, “Real-time stabilization of a falling humanoid
robot using hand contact: An optimal control approach,” in 2017
IEEE-RAS 17th International Conference on Humanoid Robotics
(Humanoids). IEEE, 2017, pp. 454–460.

[14] S. K. Yun and A. Goswami, “Tripod fall: Concept and experiments of
a novel approach to humanoid robot fall damage reduction,” in 2014
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2014, pp. 2799–2805.

[15] V. Samy and A. Kheddar, “Falls control using posture reshaping and
active compliance,” in 2015 IEEE-RAS 15th International Conference
on Humanoid Robots (Humanoids), 2015, pp. 908–913.

[16] A. Serifi, R. Grandia, E. Knoop, M. Gross, and M. Bächer, “Vmp:
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